Ewing sarcoma and CHEK2-related tumor predisposition syndrome (case report and review)
https://doi.org/10.17650/2219-4614-2025-17-2-11-24
Abstract
Ewing sarcoma is a relatively rare aggressive tumor of bones and soft tissues characterized by specific chromosomal translocations involving genes and transcription factors of the FET and ETS families. A number of studies have demonstrated the presence of molecular genetic events preceding these specific rearrangements.
The article presents a clinical observation of the treatment of a 24-year-old patient with Ewing sarcoma of the X rib and CHEK2-associated cancer predisposition syndrome with an oncologically burdened family history, including Ewing sarcoma in a first-degree relative. Specific translocation of the EWSR1 gene (22q12) was identified, characteristic of tumors of the Ewing sarcoma/PNET (primitive neuroectodermal tumors) family, as well as 59 variants of different functional significance in suppressor genes and driver genes was identified in the course of a comprehensive molecular genetic study using fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) with a targeted custom panel including 415 genes involved in carcinogenesis. The patient underwent combined treatment in the volume of neoadjuvant polychemotherapy, surgical stage (extirpation of the X rib with plastic surgery) and subsequent adjuvant polychemotherapy. During dynamic observation for the period 2022–2025, there were no signs of progression and metastatic process.
Molecular genetic profiling in Ewing sarcoma has identified markers that may act as risk modifiers for disease development and progression, determine sensitivity/resistance to standard treatment methods, and serve as potential targets for personalized treatment.
About the Authors
L. N. LyubchenkoRussian Federation
Lyudmila Nikolaevna Lyubchenko
3 2nd Botkinsky Proezd, Moscow 125284
Bld. 4, 51 3rd Parkovaya St., Moscow 105425
K. M. Chernavina
Russian Federation
3 2nd Botkinsky Proezd, Moscow 125284
A. I. Senderovich
Russian Federation
Bld. 4, 51 3rd Parkovaya St., Moscow 105425
15 Marshala Timoshenko St., Moscow 121359
A. A. Kolomeytseva
Russian Federation
3 2nd Botkinsky Proezd, Moscow 125284
M. V. Sedova
Russian Federation
3 2nd Botkinsky Proezd, Moscow 125284
V. V. Chernyshov
Russian Federation
3 2nd Botkinsky Proezd, Moscow 125284
A. A. Fedenko
Russian Federation
3 2nd Botkinsky Proezd, Moscow 125284
References
1. Samburova N.V., Pimenov I.A., Zhevak T.N., Litvitsky P.F. Ewing sarcoma: molecular and genetic mechanisms of pathogenesis. Voprosy sovremennoy pediatrii = Current Pediatrics 2019;18(4): 257–63. (In Russ.).
2. Valvi S., Kellie S.J. Ewing sarcoma: focus on medical management. Journal of Bone and Soft Tissue Tumors 2015;1(1):8–17.
3. Esiashvili N., Goodman M., Marcus R.B. Jr. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance epidemiology and end results data. J Pediatr Hematol Oncol 2008;30(6):425–30. DOI: 10.1097/MPH.0b013e31816e22f3
4. Grünewald T.G.P., Cidre-Aranaz F., Surdez D. et al. Ewing sarcoma. Nat Rev Dis Primers 2018;4(1):5. DOI: 10.1038/s41572-018-0003-x
5. Franchi A. Epidemiology and classification of bone tumors. Clin Cases Miner Bone Metab 2012;9(2):92–5.
6. Wei S., Siegal G.P. Small round cell tumors of soft tissue and bone. Arch Pathol Lab Med 2022;146(1):47–59. DOI: 10.5858/arpa.2020-0773-RA
7. Dehner C.A., Lazar A.J., Chrisinger J.S. A. updates on WHO classification for small round cell tumors: Ewing sarcoma vs. everything else. Hum Pathol 2024;147:101–13. DOI: 10.1016/j.humpath.2024.01.007
8. Valiev A.K., Tararykova A.A., Teplyakov V.V. et al. Practical recommendations for the drug treatment of malignant bone tumors. Zlokachestvennye opukholi. Prakticheskie rekomendatsii RUSSCO 2022;12(#3s2):307–29. (In Russ.). DOI: 10.18027/2224-5057-2022-12-3s2-307-329
9. Yu L., Davis I.J., Liu P. Regulation of EWSR1-FLI1 function by post-transcriptional and post-translational modifications. Cancers (Basel) 2023;15(2):382. DOI: 10.3390/cancers15020382
10. OMIM. An online catalog of human genes and genetic disorders. Available at: https://www.omim.org/
11. National Library of Medicine. ClinVar. Available at: https://www.ncbi.nlm.nih.gov/clinvar/
12. Varsome. The human genomics community. Available at: https://varsome.com/
13. COSMIC. Catalogue of somatic mutations in cancer. Available at: https://cancer.sanger.ac.uk/cosmic
14. Hanson H., Astiazaran-Symonds E., Amendola L.M. et al. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023;25(10):100870. DOI: 10.1016/j.gim.2023.100870
15. Gillani R., Camp S.Y., Han S. et al. Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am J Hum Genet 2022;109(6):1026–37. DOI: 10.1016/j.ajhg.2022.04.007
16. Jagodzińska-Mucha P., Sobczuk P., Mikuła M. et al. Mutational landscape of primary and recurrent Ewing sarcoma. Contemp Oncol (Pozn) 2021;25(4):241–8. DOI: 10.5114/wo.2021.112234
17. Stolarova L., Kleiblova P., Janatova M. et al. CHEK2 germline variants in cancer predisposition: stalemate rather than checkmate. Cells 2020;9(12):2675. DOI: 10.3390/cells9122675
18. Golotyuk M.A., Berezhnoj A.A., Kazantseva N.V. et al. Germline mutations in the PALB2 and CHEK2 genes and hereditary cancer. Ural’skij medicinskij zhurnal = Ural Medical Journal 2023;22(3): 126–36. (In Russ.). DOI: 52420/2071-5943-2023-22-3-126-136
19. Pushkarev A.V., Galeev M.G., Pushkarev V.A., Sultanbaev A.V. Genetic predictors of malignancy: a literature review. Kreativnaya khirurgiya i onkologiya = Creative Surgery and Oncology 2021;11(2): 157–65. In Russ.). DOI: 10.24060/2076-3093-2021-11-2-157-165
20. Mandelker D., Kumar R., Pei X. et al. The landscape of somatic genetic alterations in breast cancers from CHEK2 germline mutation carriers. JNCI Cancer Spectr 2019;3(2):pkz027. DOI: 10.1093/jncics/pkz027
21. Matveev V.B., Kirichek A.A., Savinkova A.V. et al. Impact of germline CHEK2 mutations on biochemical relapse free survival and metastasis free survival after radical treatment for patients with prostate cancer. Onkourologiya = Cancer Urology 2018;14(4):53–67. (In Russ.). DOI: 10.17650/1726-9776-2018-14-4-53-67
22. Lyubchenko L.N., Bateneva E.I., Abramov I.S. et al. Hereditary breast and ovarian cancer. Zlokachestvennye opukholi = Malignant Tumours 2013;(2):53–61. (In Russ.). DOI: 18027/2224-5057-2013-2-53-61
23. Cybulski C., Wokołorczyk D., Huzarski T. et al. A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res Treat 2007;102(1):119–22. DOI: 10.1007/s10549-006-9320-y
24. Pushkarev A.V., Galeev M.G., Pushkarev V.A., Sultanbaev A.V. Genetic predictors of malignancy: a literature review. Kreativnaya khirurgiya i onkologiya = Creative Surgery and Oncology 2021;11(2):157–65. (In Russ.). DOI: 10.24060/2076-3093-2021-11-2-157-165
25. Kirchner K., Gamulin M., Kulis T. et al. Comprehensive clinical and genetic analysis of CHEK2 in croatian men with prostate cancer. Genes (Basel) 2022;13(11):1955. DOI: 10.3390/genes13111955
26. Näslund-Koch C., Nordestgaard B.G., Bojesen S.E. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study. J Clin Oncol 2016;34(11):1208–16. DOI: 10.1200/JCO.2015.63.3594
27. Hu C., Hart S.N., Gnanaolivu R. et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med 2021;384(5):440–51. DOI: 10.1056/NEJMoa2005936
28. Ma X., Zhang B., Zheng W. Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta- analysis, and epidemiological evidence. Gut 2014;63(2):326–36. DOI: 10.1136/gutjnl-2012-304121
29. Liu C., Wang Q.S., Wang Y.J. The CHEK2 I157T variant and colorectal cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev 2012;13(5):2051–5. DOI: 10.7314/apjcp.2012.13.5.2051
30. Teodorczyk U., Cybulski C., Wokołorczyk D. et al. The risk of gastric cancer in carriers of CHEK2 mutations. Fam Cancer 2013;12(3):473–8. DOI: 10.1007/s10689-012-9599-2
31. Wang Y., Dai B., Ye D. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8(9):15708–15.
32. Obazee O., Archibugi L., Andriulli A. et al. Germline BRCA2 K3326X and CHEK2 I157T mutations increase risk for sporadic pancreatic ductal adenocarcinoma. Int J Cancer 2019;145(3):686–93. DOI: 10.1002/ijc.32127
33. Siołek M., Cybulski C., Gąsior-Perczak D. et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer 2015;137(3):548–52. DOI: 10.1002/ijc.29426
34. Kriege M., Hollestelle A., Jager A. et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. Br J Cancer 2014;111(5):1004–13. DOI: 10.1038/bjc.2014.306
35. Bit-Sava E.M., Semiglazov V.F., Imyanitov E.N. et al. Neoadjuvant chemotherapy for hereditary breast cancer. Prakticheskaya onkologiya = Practical Oncology 2018;19(3):248–56. (In Russ.). DOI: 10.31917/1903248
36. Tung N.M., Robson M.E., Ventz S. et al. TBCRC 048: phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J Clin Oncol 2020;38(36):4274–82. DOI: 10.1200/JCO.20.02151
37. Joris S., Denys H., Collignon J. et al. Efficacy of olaparib in advanced cancers with germline or somatic mutations in BRCA1, BRCA2, CHEK2 and ATM, a Belgian Precision tumor-agnostic phase II study. ESMO Open 2023;8(6):102041. DOI: 10.1016/j.esmoop.2023.102041
38. National Library of Medicine. National Center for Biotechnology Information. Available at: https://clinicaltrials.gov/
39. Zabludoff S.D., Deng C., Grondine M.R. et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 2008;7(9):2955–66. DOI: 10.1158/1535-7163.MCT-08-0492
40. Angius G., Tomao S., Stati V. et al. Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development. Cancer Chemother Pharmacol 2020;85(1):9–20. DOI: 10.1007/s00280-019-03950-y
41. Khamidullina A.I., Abramenko Y.E., Bruter A.V., Tatarskiy V.V. Key proteins of replication stress response and cell cycle control as cancer therapy targets. Int J Mol Sci 2024;25(2):1263. DOI: 10.3390/ijms25021263
42. Gorthi A., Romero J.C., Loranc E. et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 2018;555(7696):387–91. DOI: 10.1038/nature25748
43. Garnett M.J., Edelman E.J., Heidorn C.H. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012;483(7391):570–5. DOI: 10.1038/nature11005
44. Chugh R., Ballman K.V., Helman L.J. et al. SARC025 arms 1 and 2: a phase 1 study of the poly(ADP-ribose) polymerase inhibitor niraparib with temozolomide or irinotecan in patients with advanced Ewing sarcoma. Cancer 2021;127(8):1301–10. DOI: 10.1002/cncr.33349
45. Rumyantsev А.А., Tikhomirova Т.Е., Tsareva А.S. et al. Impact of PARP inhibitor maintenance therapy after initial treatment on the efficacy of subsequent therapy in ovarian cancer: a propensity score matching analysis. Zlokachestvennye opukholi = Malignant Tumours 2024;14(4):50–7. (In Russ.). DOI: 10.18027/2224-5057-2024-020
46. Choy E., Butrynski J.E., Harmon D.C. et al. Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer 2014;14:813. DOI: 10.1186/1471-2407-14-813
47. ClinicalTrials.gov (2021) study of talazoparib, a PARP inhibitor, in patients with advanced or recurrent solid tumors (NCT01286987). ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/results/NCT01286987
48. Schafer E.S., Rau R.E., Berg S.L. et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children’s Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer 2020;67(2):e28073. DOI: 10.1002/pbc.28073
49. Study of onivyde with talazoparib or temozolomide in children with recurrent solid tumors and ewing sarcoma (NCT04901702). ClinicalTrials.gov. Available at: https://www.clinicaltrials.gov/study/NCT04901702?cond=NCT04901702&rank=1
50. Ding K., He Y., Wei J. et al. A score of DNA damage repair pathway with the predictive ability for chemotherapy and immunotherapy is strongly associated with immune signaling pathway in pan-cancer. Front Immunol 2022;13:943090. DOI: 10.3389/fimmu.2022.943090
51. Barnieh F.M., Loadman P.M., Falconer R.A. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr Res Pharmacol Drug Discov 2021;2:100017. DOI: 10.1016/j.crphar.2021.100017
52. Jurkovicova D., Neophytou C.M., Gašparović A.Č., Gonçalves A.C. DNA damage response in cancer therapy and resistance: challenges and opportunities. Int J Mol Sci 2022;23(23):14672. DOI: 10.3390/ijms232314672
Review
For citations:
Lyubchenko L.N., Chernavina K.M., Senderovich A.I., Kolomeytseva A.A., Sedova M.V., Chernyshov V.V., Fedenko A.A. Ewing sarcoma and CHEK2-related tumor predisposition syndrome (case report and review). Bone and soft tissue sarcomas, tumors of the skin. 2025;17(2):11-24. (In Russ.) https://doi.org/10.17650/2219-4614-2025-17-2-11-24