Возможности применения таргетной терапии при лечении остеосаркомы у детей и подростков (литературный обзор)
Аннотация
Методы лечения остеосаркомы на протяжении последних двадцати лет практически не менялись. существуют пять основных препаратов (цисплатин, адриамицин, метотрексат, ифосфамид, этопозид), которые применялись в различных комбинациях и дозах. результаты выживаемости приблизительно одинаковые. У пациентов с локализованным вариантом остеосаркомы 5-летняя общая выживаемость 75%, 5-летняя бессобытийная выживаемость – 62%. У пациентов с метастатической остеосаркомой результаты намного хуже: 5-летняя общая выживаемость – 35%, 5-летняя бессобытийная выживаемость – 20%.
Актуальность данной темы обусловлена тем, что результаты лечения остеосаркомы остаются неудовлетворительными, и оптимальная терапевтическая стратегия неизвестна. В связи с чем разрабатываются новые программы, опираясь на опыт применения протоколов, существовавших ранее, с учетом молекулярно-биологических особенностей опухолевых клеток. Исследование различных клеточных сигнальных путей, опухолевого микроокружения открывает путь к применению совершенно новых классов лекарственных препаратов (мультикиназных ингибиторов и моноклональных антител), клеточной и цитокиновой терапии.
Об авторе
Э. Р. СенжаповаРоссия
г. Москва
Список литературы
1. By Gaetano Bacci et al. Long-Term Outcome for Patients With Nonmetastatic Osteosarcoma of the Extremity Treated at the Istituto Ortopedico Rizzoli According to the Istituto Ortopedico Rizzoli/Osteosarcoma-2 Protocol: An Updated Report. Journal of clinical oncology. 2000, v. 18, p. 4016-4027.
2. Stefano Ferrari et al. Neoadjuvant Chemotherapy With Methotrexate, Cisplatin, and Doxorubicin With or Without Ifosfamide in Nonmetastatic Osteosarcoma of the Extremity: An Italian Sarcoma Group Trial ISG/OS-1. Journal of clinical oncology. 2012, v. 30, No. 17, p. 2112-2118.
3. Stefano Ferrari et al. Neoadjuvant Chemotherapy With HighDose Ifosfamide, High-Dose Methotrexate, Cisplatin, and Doxorubicin for Patients With Localized Osteosarcoma of the Extremity: A Joint Study by the Italian and Scandinavian Sarcoma Groups. Journal of clinical oncology. 2005, v. 23, No. 34, p. 8845-8852.
4. Marta Hegyi et al. Good Prognosis of Localized Osteosarcoma in Young Patients Treated With Limb-Salvage Surgery and Chemotherapy. Pediatric Blood Cancer. 2011, v. 57, p. 415-422.
5. Sigbjørn Smeland et al. Results of the Scandinavian Sarcoma Group XIV protocol for classical osteosarcoma. Acta Orthopaedica. 2011, v. 82 (2), p. 211-216.
6. Yukihide Iwamoto et al. Multiinstitutional phase II study of neoadjuvant chemotherapy for osteosarcoma (NECO study) in Japan: NECO-93J and NECO-95J. Journal of orthopedic science. 2009, v. 14, p. 397-404.
7. A. Sérgio Petrilli et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: Prognostic Factors and Impact on Survival. Journal of clinical oncology. 2006, v. 24, No. 7, p. 1161-1168.
8. By Allen M. Goorin et al. Presurgical Chemotherapy Compared With Immediate Surgery and Adjuvant Chemotherapy for Nonmetastatic Osteosarcoma: Pediatric Oncology Group Study POG-8651. Journal of clinical oncology. 2003, v. 21, p. 1574-1580.
9. Marie-Cécile Le Deley et al. SFOP OS94: A randomized trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. European journal of cancer. 2007, v. 43, p. 752-761.
10. Pamela S. Hinds et al. Aggressive treatment of non-metastatic osteosarcoma improves health-related quality of life in children and adolescents. European journal of cancer. 2009, v. 45, p. 2007-2014.
11. Najat C. Daw et al. Frontline Treatment of Localized Osteosarcoma Without Methotrexate. Cancer. 2011, v. 117, p. 2770-2778.
12. Paul A. Meyers et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. Journal of clinical oncology. 2008, v. 28, No. 9, p. 633-638.
13. Meyersa P.A., Healeya J.H., Choua A.J. et al. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer. 2011, v. 117, 8, p. 1736-1744.
14. Michael S. Isakoff et al. Poor Survival for Osteosarcoma of the Pelvis: A Report from the Children’s Oncology Group. Clinical Orthopedics Related Research. 2012, v. 470, p. 2007-2013.
15. Kjetil Boye et al. High-Dose Chemotherapy with Stem Cell Rescue in the Primary Treatment of Metastatic and Pelvic Osteosarcoma: Final Results of the ISG/SSG II Study. Pediatric blood cancer. 2014, v. 61, 5, p. 840-845.
16. Najat C. Daw et al. Metastatic Osteosarcoma. Results of Two Consecutive Therapeutic Trials at St. Jude Children’s Research Hospital. Cancer. 2006, v. 106, p. 403-412.
17. Ebb David, Holcombe Grier, Karen Marcus et al. Phase II Trial of Trastuzumab in Combination With Cytotoxic Chemotherapy for Treatment of Metastatic Osteosarcoma With Human Epidermal Growth Factor Receptor 2 Overexpression: A Report From the Children’s Oncology Group. Journal of clinical oncology. 2012, v. 30, No. 20, p. 2245-2551.
18. Goldsby RobertE., Timothy M. Fan, Doojduen Villaluna et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent hemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. European Journal of Cancer. 2013, v. 49, p. 2384-2391.
19. Grignani G. et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Annals of Oncology. 2012, v. 23 (2), p. 508-516.
20. Jiong Mei et al. VEGFR, RET, and RAF/MEK/ERK Pathway Take Part in the Inhibition of Osteosarcoma MG63 Cells with Sorafenib Treatment. Cell Biochem Biophys. 2014, v. 69 (1), p. 151-156.
21. Grignani G., Palmerini E., Dileo P. et al. A Phase I Trial and Pharmacokinetic Study of Sorafenib in Children with Refractory Solid Tumors or Leukemias: A Children’s Oncology Group Phase I Consortium Report. Clinical Cancer Research. 2012, v. 18 (21), p. 6011-6022.
22. Inaba Hiroto, Jeffrey E. Rubnitz et al. Phase I Pharmacokinetic and Pharmacodynamic Study of the Multikinase Inhibitor Sorafenib in Combination With Clofarabine and Cytarabine in Pediatric Relapsed/Refractory Leukemia. Journal of clinical oncology. 2011, v. 29, No. 24, p. 3293-3300.
23. COG AAML1031: Phase III randomized trial for patients with de novo AML using bortezomib and sorafenib for high allelic ratio FLT3/ITD. Protocol Children’s Oncology Group.
24. AML08: A phase III randomized trial of clofarabine plus cytarabine versus conventional induction therapy and a phase II study of natural killer cell transplantation in patients with newly diagnosed acute myeloid leukemia. Protocol St. Jude Children’s Research Hospital.
25. Schmid Irene, MD, Beate Haberle, MD, Michael H. Albert et al. Sorafenib and Cisplatin/Doxorubicin (PLADO) in Pediatric Hepatocellular Carcinoma. Pediatric Blood Cancer. 2012, v. 58, p. 539-544.
26. Martín-Liberal J. et al. Phase I trial of sorafenib in combination with ifosfamide in patients with advanced sarcoma: a Spanish group for research on sarcomas (GEIS) study. Invest New Drugs. 2014, v. 32, p. 287-294.
27. Pignochino Ymera, Carmine Dell’Aglio, Marco Basiricò et al. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 Upregulation in Osteosarcoma Preclinical Models. Clinical Cancer Research. 2013, v. 19 (8), p. 2117-2131.
28. Palmerini E., Lewis Jones R., Paioli A. et al. Phase II Open Label, Non-randomized study of sorafenib and everolimus in unresectable metastatic osteosarcoma (OST) patients relapsed after standard chemotherapy. NCT01804374. http://meetinglibrary.asco.org/content/133681-144.
29. Fouladi Maryam, Fred Laningham, Jianrong Wu et al. Phase I Study of Everolimus in Pediatric Patients With Refractory Solid Tumors. Journal of clinical oncology. 2007, v. 25, No. 30, p. 4806-4812.
30. Franz D.N., Sparagana S., Frost M. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomized, placebo-controlled phase 3 trial. Lancet. 2013, v. 381 (9861), p. 125-132.
31. Phase II Study of Everolimus in Children and Adolescents With Refractory or Relapsed Osteosarcoma. http://clinicaltrial.gov/show/NCT01216826.
32. By Richard Gorlick et al. Expression of HER2/erbB-2 Correlates With Survival in Osteosarcoma. Journal of clinical oncology. 1999, v. 17, p. 2781-2788.
33. Tomohiro Akatsuka et al. ErbB2 Expression Is Correlated with Increased Survival of Patients with Osteosarcoma. Cancer. 2002, v. 94, p. 1397-1404.
34. Sarah Gorlick et al. HER-2 Expression is Not Prognostic in Osteosarcoma; A Children’s Oncology Group Prospective Biology Study. Pediatric blood cancer. 2014, v. 69.
35. Melinda S. Merchant at al. Phase 1 trial and pharmacokinetic study of Lexatumumab in pediatric patients with solid tumor. Journal of clinical oncology. 2012, v. 30, No. 33, p. 4141-4147.
36. Michal Roth et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014, v. 120, p. 548-554.
37. A Phase I trial of humanized Anti-GD2 Monoclonal Antibody (Hu14.18K322A) in children and adolescents with neuroblastoma, osteosarcoma and melanoma. http://clinicaltrial.gov/show/NCT00743496.
38. Alice L.Yu, MD, Andrew L. Gilman et al. Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. New English Journal of Medicine. 2010, v. 363 (14), p. 1324-1334.
39. Suzanne S. Shusterman, Wendy B. London, Stephen D. Gillies et al. Antitumor Activity of Hu14.18-IL2 in Patients With Relapsed/Refractory Neuroblastoma: A Children’s Oncology Group (COG) Phase II Study. Journal of clinical oncology. 2010, v. 28 (33), p. 4969-4975.
40. Fariba Navid, Barry L. Shulkin, Robert A. Kaufman et al. Phase I Trial of a Novel Anti-GD2 Monoclonal Antibody, Hu14.18K322A, Designed to Decrease Toxicity in Children With Refractory or Recurrent Neuroblastoma. Journal of clinical oncology. 2014, v. 10, No. 11.
41. Philippe Clézardin et al. Bisphosphonates in preclinical bone oncology. Bone. 2011, v. 49, p. 66-70.
42. Jun Ah Lee, Jun Soo Jung, Dong Ho Kim. RANKL Expression Is Related to Treatment Outcome of Patients With Localized, High-Grade Osteosarcoma. Pediatric Blood Cancer. 2010, v. 56, p. 738-743.
43. Toru Akiyama, Crispin R. Dass et al. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, boneresorbing activity, and apoptosis pathway. Molecular Cancer Therapy. 2008, v. 7, p. 11.
44. Zhaoxu Li et al. Potential of human γδ T-cells for immunotherapy of osteosarcoma. Molecular Biology Reports. 2013, v. 40, p. 427-437.
45. Maria Serena Benassi, Francesca Ponticelli et al. Growth inhibition and sensitization to cisplatin by zoledronic acid in osteosarcoma cells. Cancer Letters. 2007, v. 250, p. 194-205.
46. Meyersa P.A., Healeya J.H., Choua A.J. et al. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer. 2011, v. 117 (8), p. 1736-1744.
47. Goldsby Robert E., Timothy M. Fan, Doojduen Villaluna et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent hemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. European Journal of Cancer. 2013, v. 49, p. 2384-2391.
48. Gatien Moriceau et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Reserch. 2010, v. 70 (24), p. 10329-10339.
49. Emilie P. Buddingh et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clinical cancer research. 2011, v. 17, 8, p. 2110-2019.
50. Carola A.S. Arndt et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. A report from the Children’s Oncology Group. Clinical cancer research. 2010, v. 16, 15, p. 4024-4030.
51. By Tadahiko Kubo et al. Interferon-α/β receptor as a prognostic marker in osteosarcoma. Journal Bone Joint Surg. Am. 2011, v. 93, p. 519-526.
52. Stefan S. Bielack et al. MAP plus maintenance pegylated interferon α 2b (MAPInf) versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS1 «good response» randomization. Journal of clinical oncology. 2013, v. 31, No. 18.
53. Kosei Ando et al. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacotherapy. 2011, v. 12, 2, p. 285-292.
54. Paul A. Meyers et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high dose methotrexate. Journal of clinical oncology. 2005, v. 23, No. 9, p. 2004-2011.
55. Paul A. Meyers et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. Journal of clinical oncology. 2008, v. 28, No. 9, p. 633-638.
56. Anderson P.M. et al. Mifamurtid e in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic and safety assessments. Pediatric blood cancer. 2014, v. 61, 2, p. 238-244.
57. Jens H.W. Pahl et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ. Journal of experimental and clinical cancer research. 2014, 27-33.
58. Sergei R. Guma et al. Natural killer sell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatric blood cancer. 2014, v. 61, p. 618-626.
59. Emilie P. Beddingh et al. Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15 – activated allogenic and autologous NK-cells. Cancer Immunology Immunotherapy. 2011, v. 60, p. 575-586.
60. Haploidentical Donor natural killer cell infusion with intravenous recombinant human IL-15 (rhIL-15) in adults with refractory or relapsed acute myelogenous leukemia. Protocol University of Minesota.
61. Jens H.W. Pahl et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clinical cancer research. 2012, v. 18, p. 432-441.
62. David Delgado et al. KIR receptor-ligand incompatibility predicts killing of osteosarcoma cell lines by allogenic NKcells. Pediatric blood cancer. 2010, v. 55, 7, p. 1300-1305.
63. Jeffrey E. Rubnitz et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. Journal of clinical oncology. 2010, v. 28, No. 6, p. 955-959.
64. GD2NK: A safety/feasibility trial of the addition of the humanized anti-GD2 antibody (hu14.18K322A) with and without natural killer cells to chemotherapy in children and adolescents with recurrent/refractory neuroblastoma. Protocol St. Jude Children’s Research Hospital.
Рецензия
Для цитирования:
Сенжапова Э.Р. Возможности применения таргетной терапии при лечении остеосаркомы у детей и подростков (литературный обзор). Саркомы костей, мягких тканей и опухоли кожи. 2014;(2):34-44.
For citation:
Senzhapova E.R. Possibility of targeted therapy of osteosarcoma in children and adolescents (literature review). Bone and soft tissue sarcomas, tumors of the skin. 2014;(2):34-44. (In Russ.)