Молекулярно-клеточные процессы взаимодействия костной ткани и импланта
Аннотация
При дефектах костей, переломах и реконструктивной хирургии требуется восстановление костной ткани. Клеточная инженерия предоставляет множество подходов для решения этой проблемы. в этом обзоре мы описываем молекулярно-клеточные процессы взаимодействия костной ткани и импланта.
Об авторах
И. С. РагиновРоссия
г. Казань
Л. Р. Валиуллин
Россия
г. Казань
В. И. Егоров
Россия
г. Казань
И. Р. Сафин
Россия
г. Казань
Р. Р. Зиннуров
Россия
г. Казань
Список литературы
1. Friedenstein A.Y. Induction of bone tissue by transitional epithelium. Clin. Orthop. Relat. Res. 1968, v. 59, p. 21-37.
2. Davies J.E., Hosseini M.M. Histodynamics of endosseous wound healing. In: Bone Engineering (Davies J.E., ed.), Em squared Inc., Toronto, Canada. 2000, p. 1-14.
3. Urist M.R. Bone: Formation by autoinduction. Science. 1965, v. 150, p. 893-899.
4. Urist M.R., Silverman B.F., Buring K. et al. The bone induction principle. Clin. Orthop. 1967, v. 53, p. 243-283.
5. Urist M.R., StratesB.S. Bone morphogenetic protein. J. Dent. Res. 1971, v. 50, p. 1392-1406.
6. Reddi A.H. Cell biology and biochemistry of endochondral bone development. Coll. Relat. Res. 1981, v. 1, p. 209-226.
7. Liu Y., de Groot K., Hunziker E.B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossifi cation in an ectopic rat model. Bone. 2005, v. 36, p. 745-757.
8. Kuboki Y., Saito T., Murata M. et al. Two distinctive BMP carriers induce zonal chondrogenesis and membranous ossifi cation, respectively; Geometrical factors of matrices for celldifferentiation. Connect Tissue Res. 1995, v. 32, p. 219-226.
9. Selye H., Lemire Y., Bajusz E. Induction of bone, cartilage and hemopoietic tissue by subcutaneously implanted tissue diaphragms. Roux’ Arch. Entwicklungsmech. 1960, v. 151, p. 572-585.
10. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996, v. 17, p. 31-35.
11. Habibovic P., Gbureck U., Doillon C.J. et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008, v. 29, p. 944-953.
12. Ripamonti U., Klar R.M., Renton L.F., Ferretti C. Synergistic induction of bone formation by Hop-1, HTGbeta3 and inhibition by zoledronate in macroporous coralderived hydroxyapatites. Biomaterials. 2010, v. 31, p. 6400-6410.
13. Barbieri D., RenardA.J., de Bruijn J.D., Yuan H. Heterotopic bone formation by nano-apatite containing poly (D,L-lactide) composites. Eur. Cell. Mater. 2010, v. 19, p. 252-261.
14. Li J., Habibovic P., Yuan H. et al. Biological performance in goats of a porous titanium alloybiphasic calcium phosphate composite. Biomaterials. 2007, v. 28, p. 4209-4218.
15. LeGeros R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, v. 108, p. 4742-4753.
16. Yuan H., Fernandes H., Habibovic P. et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA. 2010, v. 107, p. 13614-13619.
17. Zarb G.A., Albrektsson T. Osseointegration: a requiem for the periodontal ligament? Int. J. Periodont. Rest. Dent. 1991, v. 11, p. 88-91.
18. Nevins M., Langer B. The successful application of osseointegrated implants to the posterior jaw: a long-term retrospective study. Int. J. Oral. Maxillofac. Implants. 1993, v. 8, p. 423-428.
19. Sandborn P.M., Cook S.D., Spires W.P., Kesters M.A. Tissue response to porous-coated implants lacking initial bone apposition. J. Arthroplasty. 1989, v. 3, p. 337-346.
20. Woo K.M., Seo J., Zhang R., MaP.X. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007, v. 28, p. 2622-2630.
21. Garcia A.J., Reyes C.D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res. 2005, v. 5, p. 407-413.
22. Lossdorfer S., Schwartz Z., Wang L. et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. A. 2004, v. 70, p. 361-369.
23. Gorsky J.P. Is all bone the same? Distinctive distributions and properties of noncollagenous matrix proteins in lamellar vs woven bone imply the existence of different underlying osteogenic mechanisms. Crit. Rev. Oral. Biol. Med. 1998, v. 9, p. 201-223.
24. Linder L., Obrant K., Boivin G. Osseointegration of metallic implants II. Transmission electron microscopy in the rabbit. Acta Orthop. Scand. 1989, v. 60, p. 135-139.
25. Wozney J.M. The bone morphogenetic protein family: Multifunctional cellular regulators in the embryo and adult. Eur. J. Oral. Sci. 1998, v. 106, p. 160-166.
26. Yuan H., van Blitterswijk C.A., de Groot K., de Bruijn J.D. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006, v. 12, p. 1607-1615.
Рецензия
Для цитирования:
Рагинов И.С., Валиуллин Л.Р., Егоров В.И., Сафин И.Р., Зиннуров Р.Р. Молекулярно-клеточные процессы взаимодействия костной ткани и импланта. Саркомы костей, мягких тканей и опухоли кожи. 2014;(3-4):63-64.
For citation:
Raginov I.S., Valiullin L.R., Egorov V.I., Safin I.R., Zinnurov R.R. Molecular and cellular processes of osteal tissue and implant interaction. Bone and soft tissue sarcomas, tumors of the skin. 2014;(3-4):63-64. (In Russ.)