Preview

Bone and soft tissue sarcomas, tumors of the skin

Advanced search

Molecular and cellular processes of osteal tissue and implant interaction

Abstract

The need for bone repair is one of the major concerns in bone defects, fracture healing, and reconstructive surgery. There are many approaches to bone tissue engineering. In this review we describe molecular and cellular processes of osteal tissue and implant interaction.

About the Authors

I. S. Raginov
Federal Center of Toxicological, Radiation and Biological Safety
Russian Federation

Kazan



L. R. Valiullin
Federal Center of Toxicological, Radiation and Biological Safety
Russian Federation

Kazan



V. I. Egorov
Federal Center of Toxicological, Radiation and Biological Safety
Russian Federation

Kazan



I. R. Safin
Federal Center of Toxicological, Radiation and Biological Safety
Russian Federation

Kazan



R. R. Zinnurov
Federal Center of Toxicological, Radiation and Biological Safety
Russian Federation

Kazan



References

1. Friedenstein A.Y. Induction of bone tissue by transitional epithelium. Clin. Orthop. Relat. Res. 1968, v. 59, p. 21-37.

2. Davies J.E., Hosseini M.M. Histodynamics of endosseous wound healing. In: Bone Engineering (Davies J.E., ed.), Em squared Inc., Toronto, Canada. 2000, p. 1-14.

3. Urist M.R. Bone: Formation by autoinduction. Science. 1965, v. 150, p. 893-899.

4. Urist M.R., Silverman B.F., Buring K. et al. The bone induction principle. Clin. Orthop. 1967, v. 53, p. 243-283.

5. Urist M.R., StratesB.S. Bone morphogenetic protein. J. Dent. Res. 1971, v. 50, p. 1392-1406.

6. Reddi A.H. Cell biology and biochemistry of endochondral bone development. Coll. Relat. Res. 1981, v. 1, p. 209-226.

7. Liu Y., de Groot K., Hunziker E.B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossifi cation in an ectopic rat model. Bone. 2005, v. 36, p. 745-757.

8. Kuboki Y., Saito T., Murata M. et al. Two distinctive BMP carriers induce zonal chondrogenesis and membranous ossifi cation, respectively; Geometrical factors of matrices for celldifferentiation. Connect Tissue Res. 1995, v. 32, p. 219-226.

9. Selye H., Lemire Y., Bajusz E. Induction of bone, cartilage and hemopoietic tissue by subcutaneously implanted tissue diaphragms. Roux’ Arch. Entwicklungsmech. 1960, v. 151, p. 572-585.

10. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996, v. 17, p. 31-35.

11. Habibovic P., Gbureck U., Doillon C.J. et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008, v. 29, p. 944-953.

12. Ripamonti U., Klar R.M., Renton L.F., Ferretti C. Synergistic induction of bone formation by Hop-1, HTGbeta3 and inhibition by zoledronate in macroporous coralderived hydroxyapatites. Biomaterials. 2010, v. 31, p. 6400-6410.

13. Barbieri D., RenardA.J., de Bruijn J.D., Yuan H. Heterotopic bone formation by nano-apatite containing poly (D,L-lactide) composites. Eur. Cell. Mater. 2010, v. 19, p. 252-261.

14. Li J., Habibovic P., Yuan H. et al. Biological performance in goats of a porous titanium alloybiphasic calcium phosphate composite. Biomaterials. 2007, v. 28, p. 4209-4218.

15. LeGeros R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, v. 108, p. 4742-4753.

16. Yuan H., Fernandes H., Habibovic P. et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA. 2010, v. 107, p. 13614-13619.

17. Zarb G.A., Albrektsson T. Osseointegration: a requiem for the periodontal ligament? Int. J. Periodont. Rest. Dent. 1991, v. 11, p. 88-91.

18. Nevins M., Langer B. The successful application of osseointegrated implants to the posterior jaw: a long-term retrospective study. Int. J. Oral. Maxillofac. Implants. 1993, v. 8, p. 423-428.

19. Sandborn P.M., Cook S.D., Spires W.P., Kesters M.A. Tissue response to porous-coated implants lacking initial bone apposition. J. Arthroplasty. 1989, v. 3, p. 337-346.

20. Woo K.M., Seo J., Zhang R., MaP.X. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007, v. 28, p. 2622-2630.

21. Garcia A.J., Reyes C.D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res. 2005, v. 5, p. 407-413.

22. Lossdorfer S., Schwartz Z., Wang L. et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. A. 2004, v. 70, p. 361-369.

23. Gorsky J.P. Is all bone the same? Distinctive distributions and properties of noncollagenous matrix proteins in lamellar vs woven bone imply the existence of different underlying osteogenic mechanisms. Crit. Rev. Oral. Biol. Med. 1998, v. 9, p. 201-223.

24. Linder L., Obrant K., Boivin G. Osseointegration of metallic implants II. Transmission electron microscopy in the rabbit. Acta Orthop. Scand. 1989, v. 60, p. 135-139.

25. Wozney J.M. The bone morphogenetic protein family: Multifunctional cellular regulators in the embryo and adult. Eur. J. Oral. Sci. 1998, v. 106, p. 160-166.

26. Yuan H., van Blitterswijk C.A., de Groot K., de Bruijn J.D. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006, v. 12, p. 1607-1615.


Review

For citations:


Raginov I.S., Valiullin L.R., Egorov V.I., Safin I.R., Zinnurov R.R. Molecular and cellular processes of osteal tissue and implant interaction. Bone and soft tissue sarcomas, tumors of the skin. 2014;(3-4):63-64. (In Russ.)

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-4614 (Print)
ISSN 2782-3687 (Online)