Preview

Bone and soft tissue sarcomas, tumors of the skin

Advanced search

EVALUATION OF MECHSANICAL PROPERTIES OF LONG CANINE BONES

Abstract

Methods of preparation and mechanical testing of pressure resistance of bone samples are described in the following research. Results and analysis of mechanical characteristics of dog radius and humerus with brief explanation of main determined mechanical features are represented. Strength characteristics of 2 samples are identical. Maximum strength is about 1900 MPa. Yield stress is about 80 MPa. Elasticity modulus is about 1900 MPa. Relative strain at the moment of destruction is 6-6,7%. We can make a conclusion that mechanical characteristics of humerus and radius are similar, but radius has better resistance at critical stress.

About the Authors

N. U. Anisimova
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science
Russian Federation


A. V. Maximkin
National University of Science and Technology «MISIS»
Russian Federation


A. N. Kopilov
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science
Russian Federation


E. A. Kornushenkov
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science
Russian Federation


D. E. Mitrushkin
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science
Russian Federation


M. V. Kisilevskiy
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science
Russian Federation


References

1. Kemp T.J., Bachus K.N., Naim J.A., Carrier D.R. Functional trade-offs in the limb bones of dogs selected for running versus fighting. J. Exp. Biology. 2005, v. 208, p. 3475-3482.

2. Pressel T., Bouguecha A., Vogt U., Meyer-Lindenberg A., Behrens B., Nolte I., Windhagen H. Mechanical properties of femoral trabecular bone in dogs. Biomed. Eng. Online. 2005, v. 4, p. 17.

3. Pearce A., Richards R., Milz S., Schneider E., Pearce S., Pearce A. et al. Animal models for implant biomaterial research in bone: a review. European Cells and Materials. 2007, v. 13, p. 1-10.

4. Donnelly E., Chen D., Boskey A., Baker S., Meulen M. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int. 2010, v. 87 (5), p. 450-460.

5. Currey J. Measurement of the Mechanical Properties of Bone : a recent history. Clin. Orthop. Relat. Res. 2009, v. 467, p.1948-1954.

6. Чернилевский В.Е., Донцов В.И., Глушков М.В. Методы оценки возрастного остеопороза у старых мышей. Доклады МОИП, т. 41. Секция геронтологии. 2008, с. 142-144.

7. Чуйко А.Н. Еще раз о биомеханике пародонта. Часть I. Пародонтология. 2007, № 3, с. 54-60.

8. Wald M., Magland J., Rajapakse C., Bhagat Y., Wehrli F. Predicting trabecular bone elastic properties from measures of bone volume fraction and fabric on the basis of micromagnetic resonance images. Маgnetic Resonance in Medicine. 2011.

9. Martini L., Fini M., Giavaresi G., Giardino R. Sheep model in orthopedic research: a literature review. Comp. Med. 2001, v. 51, p. 292-299.

10. Neyt J., Buckwalter J., Carroll N. Use of animal models in musculoskeletal research. Iowa Orthop. J. 1998, v. 18, p. 118-123.

11. Aerssens J., Boonen S., Joly J., Dequeker J. Variations in trabecular bone composition with anatomical site and age: potential implications for bone qualityassessment. J. Endocrinol. 1997, v. 155, p. 411-421.

12. Aerssens J., Boonen S., Lowet G., Dequeker J. Interspecies differences in bone composition, density, andquality: potential implications for in vivo bone research. Endocrinology. 1998, v. 139, p. 663-670.

13. Kuhn J., Goldstein S., Ciarelli M., Matthews L. The limitations of canine trabecular bone as a model for human: a biomechanical study. J. Biomech. 1989, v. 22, p. 95-107.

14. Wang X., Mabrey J., Agrawal C. An interspecies comparison of bone fracture properties. Biomed. Mater. Eng. 1998, v. 8, p. 1-9.

15. Гюнтер В.Э., Итин В.И., Монасевич Л.А. и соавт. Эффекты памяти формы и их применение в медицине. Новосибирск, «Наука». 1992, 742 с.

16. Карлов А.В., Шахов В.П. Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики. Томск, «STT». 2001, 480 с.

17. Xiong L., Xiong D., Jin J. Study on tribological properties of irradiated crosslinking UHMWPE nano-composite. Journal of bionic engineering. 2009, v. 6, p. 7-13.

18. Wang A., Stark C., Dumbleton J. Wear mechanisms of UHMWPE in totaljoint replacements. Proc. Inst. Mech. End. 1996, v. 210, p. 141-155.

19. Максимкин А.В., Калошкин С.Д., Чердынцев В.В., Сенатов Ф.С., Данилов В.Д. Структура и свойства наполненного дисперсным гидроксиапатитом сверхвысокомолекулярного полиэтилена. Материаловедение. 2011, № 11, с. 13-21.

20. King R.S., Hanes M.D. Medical implant or medical implant part comprising porous UHMWPE and process for producing the same. Patent US 7781526.

21. Pal K., Bag S., Pal S. Development of porous ultra high molecular weight polyethylene scaffolds for the fabrication of orbital implant. J. Porous Mater. 2008, v. 15, p. 53-59.

22. Гюнтер В.Э., Дамбаев Г.Ц., Сысолятин П.Г. и соавт. Медицинские материалы и имплантаты с памятью формы. Томск, Изд-во Томск. ун-та. 1998, 487 с.

23. Ильин А.А., Коллеров М.Ю., Давыдов Е.А. Биологически и механически совместимые имплантаты из никелида титана для лечения позвоночно-спинальных травм и дегенеративно-дистрофических заболеваний. www.implants.ru/texn-inf/2-st.shtml.


Review

For citations:


Anisimova N.U., Maximkin A.V., Kopilov A.N., Kornushenkov E.A., Mitrushkin D.E., Kisilevskiy M.V. EVALUATION OF MECHSANICAL PROPERTIES OF LONG CANINE BONES. Bone and soft tissue sarcomas, tumors of the skin. 2012;(4):53-58. (In Russ.)

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-4614 (Print)
ISSN 2782-3687 (Online)