Клинико-молекулярные аспекты предрасположенности к развитию меланомы кожи
Аннотация
Об авторах
П. А. ЧерненкоРоссия
С. Б. Петерсон
Россия
Л. Н. Любченко
Россия
Список литературы
1. Демидов Л.В., Харкевич Г.Ю. Адъювантное лечение больных меланомой кожи. Практическая онкология. Отечественная школа онкологов. СПб., 2001, № 4 (8).
2. Balch C.M., Soong S.J., Shaw H.M. et al. An analysis of prognostic factors in 8.500 patients with cutaneous melanoma. Cutaneous Melanoma. Balch C.M., Houghton A.N., Milton G.W et al., 2nd ed. Philadelphia: J.B. Lippincott. 1992, 165 p.
3. Thompson J.F., Scolyer R.A., Kefford R.F. Cutaneous melanoma. Lancet. 2005, v. 365 (9460), p. 687-701.
4. American Cancer Society (2008). Cancer Facts and Figures 2008. Atlanta, GA: American Cancer Society. Retrieved August 10, 2008. URL: http://www.cancer.org/acs/groups/content/@ nho/documents/document/2008cafffinalsecuredpdf.pdf.
5. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2008 г. Вестн. РОНЦ им. Н.Н. Блохина. 2010, т. 21, № 2.
6. Urteaga O., Pack G.T On the antiquity of melanoma. Cancer. 1966, No. v. 19 (5), p. 607-610.
7. Chin L., Merlino G., DePinho R.A. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 1998, No. 12 (22). p. 3467-3481.
8. Laennec R.T.H. Sur les melanoses. Bulletin de Faculte de Medecine. Paris. 1806, p. 1-24.
9. Norris W. A case of fungoid disease. Edinb. Med. Surg. J. 1820, No. 16, p. 562-565.
10. Hayward N.K. Genetics of melanoma predisposition. Oncogene. 2003, No. 19, v. 22 (20), p. 3053-3062.
11. Lynch H.T., Brand R.E., Hogg D. et al. Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer. 2002, v. 94 (1), p. 84-96.
12. Berking C., Bosserhoff A.K. Malignant Melanoma. Hereditary tumors. Allgayer H., Rehder H., Fulda S. WILEY-VCH Verlag GmbH & Co. KgaA. 2009, p. 411-420.
13. Leachman S.A., Carucci J., Kohlmann W. et al. Selection criteria for genetic assessment of patients with familial melanoma. J. Am. Acad. Dermatol. 2009, v. 61 (4), p. 677.e1-14.
14. Hansson J. Familial cutaneous melanoma. Adv. Exp. Med. Biol. 2010, v. 685, p. 134-145.
15. Snoo de F.A., Gruis N.A. Familial melanoma. Atlas Genet Cytogenet Oncol Haematol. April 2005. URL: http://atlasgeneticsoncology.org//Kprones/FamilialMelanomID10088.html.
16. Tucker M.A., Goldstein A.M. Melanoma etiology: where are we? Oncogene. 2003, v. 22, p. 3042-3052.
17. Aspinwall L., Leaf S., Dola E. et al. CDKN2A/p16 genetic test reporting improves early detection intentions and practices in high-risk melanoma families. Cancer Epidemiol Biomarkers Prev. 2008, v. 17, p. 1510-1519.
18. Kopf A.W., Hellman L.J., Rogers G.S. et al. Familial malignant melanoma. JAMA. 1986, v. 256, p. 1915-1919.
19. Puig S., Malvehy J., Badenas C. et al. Role of the CDKN2A Locus in patients with multiple primary melanomas. J. Clin. Oncol. 2005, v. 23, p. 3043-3051.
20. Kefford R.F., Newton Bishop J.A., Bergman W. et al. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: a consensus statement of the Melanoma Genetics Consortium. J. Clin. Oncol. 1999, v. 17, p. 3245-3251.
21. GeneCards http://www.genecards.org/cgi-bin/carddisp. pl?gene=CDKN2A&search=p53.
22. Haluska F.G., Tsao H., Wu H. et al. Genetic Alterations in Signaling Pathways in Melanoma. Clin. Cancer Res. 2006, No. 12 (7 Pt. 2), p. 2301-2307.
23. Lin J., Hocker T.L., Singh M. et al. Genetics of melanoma predisposition. The British Journal of Dermatology. 2008, v. 159 (2), p. 286-291.
24. Goldstein A.M., Chan M., Harland M. et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J. Med. Genet. 2007, v. 44, p. 99-106.
25. Serrano M., Lee H., Chin L. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996, v. 85, p. 27.
26. Dyson N., Baiman A. Oncogenes and cell proliferation. Current opinion in genetics and development. 1999, v. 9, p. 11-14.
27. Russo A.A., Tong L., Lee J.O. et al. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16lNK4a. Nature. 1998, v. 395, p. 237-243.
28. Koh J., Enders G.H., Cynlacht B.D. et al. Tumor-derived p16 alleles encoding protein defective in cell-cycle inhibition. Nature. 1995, v. 375, p. 506.
29. Lukas J., Parry D., Aagaard L. et al. Retino-blastoma-protein-dependent cell-cycle ingibition by the tumor suppressor p16. Nature. 1995, v. 375, p. 503.
30. Murphy J.A., Barrantes-Reynolds R., Kocherlakota R. et al. The CDKN2A Database: Integrating Allelic Variants With Evolution, Structure, Function, and Disease Association. Hum. Mutat. 2004, v. 24 (4), p. 296-304.
31. Goldstein A.M. Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum. Mutat. 2004, v. 23 (6), p. 630.
32. Rieder H., Bartsch D.K. Familial pancreatic cancer. Fam. Cancer. 2004, v. 3, p. 69-74.
33. Goldstein A.M., Tucker M.A. Genetic epidemiology of cutaneous melanoma: A global perspective. Archives of Dermatology, v. 137 (11), p. 1493-1496.
34. Monzon J., Liu L., Brill H. et al. CDKN2A mutations in multiple primary melanomas. N. Engl. J. Med. 1998, v. 338, p. 879-887.
35. Kefford R., Mann G. Is there a role for genetic testing in patients with melanoma. Curr. Opin. Oncol. 2003, v. 15, p. 157-161.
36. High W., Robinson W. Genetic mutations involved in melanoma: a summary of our current understanding. Adv. Dermatol. 2007, v. 23, p. 61-79.
37. Hashemi J., Platz A., Ueno T. et al. CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res. 2000, v. 60 (24), p. 6864-6867.
38. Liu L., Dilworth D., Gao L. et al. Mutation of the CDKN2A 59 UTR creates an aberrant initiation codon and predisposes to melanoma. Nat. Genet., 1999, v. 21, p. 128-132.
39. Harland M., Holland E.A., Ghiorzo P. et al. Mutation screening of the CDKN2A promoter in melanoma families. Genes Chromosomes Cancer. 2000, v. 28, p. 45-57.
40. Somoano B., Niendorf K.B., Tsao H. Hereditary cancer syndromes of the skin. Clin. Dermatol. 2005, v. 23, p. 85-106.
41. Herman J.G., Merlo A., Mao L. et al. Inactivation of the CDKN2A/p16/MTS1 gene is frequently associated with aberrant DNA mathylation in all common human cancers. Cancer research. 1995, v. 55, p. 4525.
42. Gonzalez-Zulueta M., Bender C.M., Yang A.S. et al. Methylation of the 5.CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer research. 1995, v. 55, p. 4531.
43. Norman E. Sharpless1, Lynda Chin. The INK4a/ARF locus and melanoma. Oncogene. 2003, v. 22, p. 3092-3098.
44. Rutter J.L., Goldstein A.M., Dávila M.R. et al. CDKN2A point mutations D153spl (c.457G>T) and IVS2+1G>T result in aberrant splice products affecting both p16INK4a and p14ARF. Oncogene. 2003, v. 10; 22 (28), p. 4444-4448.
45. Hansen C.B., Wadge L.M., Lowstuter K. et al. Clinical germline genetic testing for melanoma. Lancet Oncol. 2004, v. 5, p. 314-319.
46. Soufir N., Basset-Seguin N. The INK4a-ARF locus: role in the genetic predisposition to familial melanoma and in skin carcinogenesis. Bull. Cancer. 2001, v. 88 (11), p. 1061-1067.
47. Soufir N., Lacapere J.J., Bertrand G. et al. Germline mutations of the INK4a-ARF gene in patients with suspected genetic predisposition to melanoma. British Journal of Cancer. 2004, v. 90, p. 503-509.
48. Копнин Б.П. Опухолевые супрессоры и мутаторные гены. В кн: Канцерогенез. Под ред. Д.Г. Заридзе. М., «Медицина». 2004, c. 125-156.
49. Rothberg B.E.G., Berger A.J., Molinaro A.M. et al. Melanoma prognostic model using tissue microarrays and genetic algorithms. J. Clin. Oncol. 2009, v. 27, p. 5772-5780.
50. Palmieri G., Casula M., Sini M.C. et al. Issues affecting molecular staging in the management of patients with melanoma. J. Cell. Mol. Med. 2007, v. 11, p. 1052-1068.
51. Rothberg B.E.G., Bracken M.B., Rimm D.L. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J. Natl. Cancer Inst. 2009, v. 101, p. 452-474.
52. Straume O., Sviland L., Akslen L.A. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin. Cancer Res. 2000, v. 6 (5), p. 1845-53.
53. Grafstrom E., Egyhazi S., Ringborg U. et al. Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin. Cancer Res. 2005, v. 11, p. 2991-2997.
54. Casula M., Budroni M., Cossu A. et al. The susceptibility CDKN2 locus may have a role on prognosis of melanoma patients. Ann. Oncol. 2010, v. 21 (6), p. 1379-1380.
55. Goldstein A.M., Chidambaram A., Halpern A. et al. Rarity of CDK4 germline mutations in familial melanoma. Melanoma research, v. 12, p. 51-55.
56. Bale S.J., Dracopoli N.C., Tucker M.A. et al. Mapping the for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N. Engl. J. Med. 1989, p. 320 (21), v. 1367-1372. Erratum in: N. Engl. J. Med. 1991, v. 324 (13), p. 925.
57. Van Haeringen A., Bergman W., Nelen M.R. et al. Exclusion of the dysplastic nevus syndrome (DNS) locus from the short arm of chromosome 1 by linkage studies in Dutch families. Genomics. 1989, v. 5 (1), p. 61-64.
58. Cannon-Albright L.A., Goldgar D.E., Wright E.C. et al. Evidence against the reported linkage of the cutaneous melanoma-dysplastic nevus syndrome locus to chromosome Ip36. Am. J. Hum. Genet. 1990, v. 46 (5), p. 912-918.
59. Valverde P., Healy E., Jackson I. et al. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 1995, v. 11 (3), p. 328-330.
60. Palmer J.S., Duffy D.L., Box N.F. et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet. 2000, v. 66 (1), p. 176-186.
61. Box N.F., Duffy D.L., Chen W. et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am. J. Hum. Genet. 2001, v. 69 (4), p. 765-773.
62. Kraemer K.H., Lee M.M., Andrews A.D. et al. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol. 1994, v. 130 (8), p. 1018-1021.
63. Lynch H.T., Fusaro R.M., Johnson J.A. Xeroderma pigmentosum. Complementation group C and malignant melanoma. Arch. Dermatol. 1984, v. 120 (2), p. 175-179.
64. Eychene A., Barnier J.V., Apiou F. et al. Chromosomal assignment of two human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed pseudogene. Oncogene. 1992, v. 7, p. 1657-1660.
65. James M.R., Dumeni T., Stark M.S. et al. Rapid screening of 4000 individuals for germ-line variations in the BRAF gene. Clin. Chem. 2006, v. 52 (9), p. 1675-1678.
66. Laud K., Kannengiesser C., Avril M.F. et al. BRAF as a melanoma susceptibility candidate gene? French Herediatary Melanoma Study Group. Cancer Res. 2003, v. 63 (12), p. 3061-3065.
67. Casula M., Colombino M., Satta M.P. et al. Italian Melanoma Intergroup Study. BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J. Clin. Oncol. 2004, v. 22 (2), p. 286-292. Erratum in: J. Clin. Oncol. 2005, v. 23 (4), p. 936.
68. Meyer P., Sergi C., Garbe C. Polymorphisms of the BRAF gene predispose males to malignant melanoma. J. Carcinogen. 2003, v. 2, p. 7.
69. James M.R., Roth R.B., Shi M.M. et al. BRAF polymorphisms and risk of melanocytic neoplasia. J. Invest Dermatol. 2005, v. 125, p. 1252-1258.
70. Rodriguez-Viciana P., Tetsu O., Tidyman We., et al. Germline mutations in genes within the MAPK pathway cause Cardio-facio-cutaneous syndrome. Science. 2006, v. 311, p. 1287-1290.
71. Urosevic J., Sauzeau V., Soto-Montenegro M.L. et al. Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proc. Natl. Acad. Sci. USA. 2011, v. 108 (12), p. 5015-5020.
72. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 1999, v. 91, p. 1310-1316.
73. Shahbazi M., Pravica V., Nasreen N. Association between functional polymorphism in EGF gene and malignant melanoma. Lancet. 2002, v. 359 (9304), p. 397-401.
74. Kanetsky P.A., Holmes R., Walker A. et al. Interaction of glutathione S-transferase M1 and T1 genotypes and malignant melanoma. Cancer Epidemiol. Biomarkers Prev. 2001, v. 10 (5), p. 509-513.
75. Hutchinson P.E., Osborne J.E., Lear J.T. et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin. Cancer Res. 2000, v. 6 (2), p. 498-504.
76. Fargnoli M.C., Argenziano G., Zalaudek I. et al. Highand low-penetrance cutaneous melanoma susceptibility genes. Expert Rev. Anticancer Ther. 2006, v. 6 (5), p. 657-6670.
Рецензия
Для цитирования:
Черненко П.А., Петерсон С.Б., Любченко Л.Н. Клинико-молекулярные аспекты предрасположенности к развитию меланомы кожи. Саркомы костей, мягких тканей и опухоли кожи. 2012;(1):42-51.
For citation:
Chernenko P.A., Peterson S.B., Lyubchenko L.N. Molecular and dinical aspects of genetic predisposition to cutaneous malignant melanoma. Bone and soft tissue sarcomas, tumors of the skin. 2012;(1):42-51. (In Russ.)