Синовиальная саркома: современный взгляд на основы патогенеза и терапевтические подходы
https://doi.org/10.17650/2219-4614-2025-17-3-26-37
Аннотация
Синовиальная саркома характеризуется типичным транскриптом SS18::SSX. Несмотря на общий патогенез и одинаковые терапевтические подходы, может отмечаться разнонаправленный характер ответа на проводимую терапию. Предположительно это может быть связано с дополнительными, альтернативными путями генетической и эпигенетической регуляции.
 В настоящем обзоре рассмотрены вопросы диагностики, патогенеза и новые методы терапии синовиальной саркомы, в том числе эпигенетически направленные.
Об авторах
М. А. СенченкоРоссия
115522 Москва, Каширское шоссе, 24
117997 Москва, ул. Саморы Машела, 1
А. А. Тарарыкова
Россия
115522 Москва, Каширское шоссе, 24
Н. А. Козлов
Россия
115522 Москва, Каширское шоссе, 24
Т. И. Фетисов
Россия
117198 Москва, ул. Миклухо-Маклая, 6
К. И. Кирсанов
Россия
117198 Москва, ул. Миклухо-Маклая, 6
Д. В. Рогожин
Россия
Дмитрий Викторович Рогожин
115522 Москва, Каширское шоссе, 24
117513 Москва, ул. Островитянова, 1
Список литературы
1. Hoang N.T., Acevedo L.A., Mann M.J., Tolani B. A review of softtissue sarcomas: translation of biological advances into treatment measures. Cancer Manag Res 2018;10:1089–114. DOI: 10.2147/CMAR.S159641
2. National Cancer Institute, 2020. Surveillance, epidemiology, and end results (SEER) program. Available at: https://seer.cancer.gov/statfacts/html/soft.html
3. Aytekin M.N., Öztürk R., Amer K., Yapar A. Epidemiology, incidence, and survival of synovial sarcoma subtypes: SEER database analysis. J Orthop Surg 2020;28(2):1–12. DOI: 10.1177/2309499020936009
4. Thway K., Fisher C. Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol 2014;18(6):369–80. DOI: 10.1016/j.anndiagpath.2014.09.002
5. Mastrangelo G., Coindre J.M., Ducimetière F. et al. Incidence of soft tissue sarcoma and beyond: a population-based prospective study in 3 European regions. Cancer 2012;118(21):5339–48. DOI: 10.1002/cncr.27555
6. Toro J.R., Travis L.B., Hongyu J.W. et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26 758 cases. Int J Cancer 2006;119(12):2922–30. DOI: 10.1002/ijc.22239
7. Saito T. The SYT-SSX fusion protein and histological epithelial differentiation in synovial sarcoma: relationship with extracellular matrix remodeling. Int J Clin Exp Pathol 2013;6(11):2272–9.
8. Smith M.E., Fisher C., Wilkinson L.S., Edwards J.C. Synovial sarcomas lack synovial differentiation. Histopathology 1995;26(3):279–81. DOI: 10.1111/j.1365-2559.1995.tb01444.x
9. Saito T., Nagai M., Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res 2006;66(14):6919–27. DOI: 10.1158/0008-5472.CAN-05-3697
10. Garcia C.B., Shaffer C.M., Alfaro M.P. et al. Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT-SSX2. Oncogene 2012;31(18):2323–34. DOI: 10.1038/onc.2011.418
11. Naka N., Takenaka S., Araki N. et al. Synovial sarcoma is a stem cell malignancy. Stem Cells 2010;28(7):1119–31. DOI: 10.1002/stem.452
12. Ferrari A., Gronchi A., Casanova M. et al. Synovial sarcoma: a retrospective analysis of 271 patients of all ages treated at a single institution. Cancer 2004;101(3):627–34. DOI: 10.1002/cncr.20386
13. Knösel T., Heretsch S., Altendorf-Hofmann A. et al. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur J Cancer 2010;46(6):1170–6. DOI: 10.1016/j.ejca.2010.01.032
14. Krieg A.H., Hefti F., Speth B.M. et al. Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Ann Oncol 2011;22(2):458–67. DOI: 10.1093/annonc/mdq394
15. De Necochea-Campion R., Zuckerman L.M., Mirshahidi H.R. et al. Metastatic biomarkers in synovial sarcoma. Biomark Res 2017;5(1):1–8. DOI: 10.1186/s40364-017-0083-x
16. Sultan I., Rodriguez-Galindo C., Saab R. et al. Comparing children and adults with synovial sarcoma in the surveillance, epidemiology, and end results program, 1983 to 2005: an analysis of 1268 patients. Cancer 2009;115(15):3537–47. DOI: 10.1002/cncr.24424
17. Rosenthal J., Cardona K., Sayyid S.K. et al. Nodal metastases of soft tissue sarcomas: risk factors, imaging findings, and implications. Skeletal Radiol 2020;49(2):221–9. DOI: 10.1007/s00256-019-03299-6
18. O’Sullivan P.J., Harris A.C., Munk P.L. Radiological features of synovial cell sarcoma. Br J Radiol 2008;81(964):346–56. DOI: 10.1259/bjr/28335824
19. Liang C., Mao H., Tan J. et al. Synovial sarcoma: magnetic resonance and computed tomography imaging features and differential diagnostic considerations. Oncol Lett 2015;9(2):661–6. DOI: 10.3892/ol.2014.2774
20. Kasraeian S., Allison D.C., Ahlmann E.R. et al. A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res 2010;468(11):2992–3002. DOI: 10.1007/s11999-010-1401-x
21. Traina F., Errani C., Toscano A. et al. Current concepts in the biopsy of musculoskeletal tumors: AAOS exhibit selection. J Bone Jt Surg 2015;97(2):e7(1). DOI: 10.2106/JBJS.N.00661
22. Kozak K., Teterycz P., Świtaj T. et al. The long-term outcomes of intensive combined therapy of adult patients with localized synovial sarcoma. J Clin Med 2020;9(10):1–12. DOI: 10.3390/jcm9103129
23. Bianchi G., Sambri A., Righi A. et al. Histology and grading are important prognostic factors in synovial sarcoma. Eur J Surg Oncol 2017;43(9):1733–9. DOI: 10.1016/j.ejso.2017.05.020
24. Pelmus M., Guillou L., Hostein I. et al. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol 2002;26(11):1434–40. DOI: 10.1097/00000478-200211000-00005
25. Jagdis N.T., Rubin B.P., Tubbs R.R., Pacheco M. Synovial sarcoma: role of TLE1 as a diagnostic immunohistochemical marker. Am J Surg Pathol 2009;33(12):1743–51. DOI: 10.1097/PAS.0b013e3181b7ed36
26. Foo W.C., Cruise M.W., Wick M.R., Hornick J.L. Immunohistochemical staining for TLE1 distinguishes synovial sarcoma from histologic mimics. Am J Clin Pathol 2011;135(6):839–44. DOI: 10.1309/AJCP45SSNAOPXYXU
27. Matsuyama A., Hisaoka M., Iwasaki M. et al. TLE1 expression in malignant mesothelioma. Virchows Arch 2010;457(5):577–83. DOI: 10.1007/s00428-010-0975-8
28. Kohashi K., Oda Y., Yamamoto H. et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol 2010;23(7):981–90. DOI: 10.1038/modpathol.2010.71
29. Jungbluth A.A., Antonescu C.R., Busam K.J. et al. Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer 2001;94(2):252–6. DOI: 10.1002/ijc.1451
30. Lai J.P., Robbins P.F., Raffeld M. et al. NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol 2012;25(6):854–8. DOI: 10.1038/modpathol.2012.31
31. Endo M., de Graaff M.A., Ingram D.R. et al. NY-ESO-1 (CTAG1B) expression in mesenchymal tumors. Mod Pathol 2015;28(4):587–95. DOI: 10.1038/modpathol.2014.155
32. Baranov E., McBride M.J., Bellizzi A.M. et al. A novel SS18-SSX fusion-specific antibody for the diagnosis of synovial sarcoma. Am J Surg Pathol 2020;44(7):922–33. DOI: 10.1097/PAS.0000000000001447
33. Amary M.F., Berisha F., Bernardi Fdel C. et al. Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod Pathol 2007;20(4):482–96. DOI: 10.1038/modpathol.3800761
34. Nielsen T.O., Poulin N.M., Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov 2015;5(2):124–34. DOI: 10.1158/2159-8290.CD-14-1246
35. Sandberg A.A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet 2004;155(1):1–24. DOI: 10.1016/j.cancergencyto.2004.08.005
36. Panagopoulos I., Mertens F., Isaksson M. et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Cancer Genet Cytogenet 2001;372:362–72. DOI: 10.1002/gcc.1155
37. Joseph C.G., Hwang H., Jiao Y. et al. Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Genes Chromosom Cancer 2014;53(1):15–24. DOI: 10.1002/gcc.22114
38. Haldar M., Hancock J.D., Coffin C.M. et al. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 2007;11(4):375–88. DOI: 10.1016/j.ccr.2007.01.016
39. WHO Classification of soft tissue and bone tumours. 5th edition. Soft tissue and bone tumours, 2020.
40. De Bruijn D.R., Allander S.V., van Dijk A.H. et al. The synovial sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 2006;66(19):9474–82. DOI: 10.1158/0008-5472.CAN-05-3726
41. De Bruijn D.R., Nap J.P., van Kessel A.G. The (epi)genetics of human synovial sarcoma. Genes Chromosom Cancer 2007;46(Feb):107–17. DOI: 10.1002/gcc.20399
42. Kadoch C., Crabtree G.R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013;153(1):71–85. DOI: 10.1016/j.cell.2013.02.036
43. Middeljans E., Wan X., Jansen P.W. et al. SS18 together with animal specific factors defines human BAF-type SWI/SNF complexes. PLoS One 2012;7(3). DOI: 10.1371/journal.pone.0033834
44. Kato H., Tjernberg A., Zhang W. et al. SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. J Biol Chem 2002;277(7):5498–505. DOI: 10.1074/jbc.M108702200
45. Ito T., Ouchida M., Ito S. et al. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Investig 2004;84(11):1484–90. DOI: 10.1038/labinvest.3700174
46. Kelly W.K., O’Connor O.A., Marks P.A. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002;11(12):1695–713. DOI: 10.1517/13543784.11.12.1695
47. Ogryzko V.V., Schiltz R.L., Russanova V. et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996;87(5):953–9. DOI: 10.1016/S0092-8674(00)82001-2
48. Dos Santos N.R., De Bruijn D.R., Kater-Baats E. et al. Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Exp Cell Res 2000;256(1):192–202. DOI: 10.1006/excr.2000.4813
49. Wang J., Wang H., Hou W. et al. Subnuclear distribution of SSX regulates its function. Mol Cell Biochem 2013;381(1–2):17–29. DOI: 10.1007/s11010-013-1684-9
50. Sauvageau M., Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010;7(3):299–313. DOI: 10.1016/j.stem.2010.08.002
51. Margueron R., Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011;469(7330):343–9. DOI: 10.1038/nature09784
52. McBride M.J., Pulice J.L., Beird H.C. et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 2018;33(6):1128–41.e7. DOI: 10.1016/j.ccell.2018.05.002
53. Wilson B.G., Wang X., Shen X. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 2010;18(4):316–28. DOI: 10.1016/j.ccr.2010.09.006
54. Mora-Blanco E.L., Mishina Y., Tillman E.J. et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 2014;33(7):933–8. DOI: 10.1038/onc.2013.37
55. Jagani Z., Mora-Blanco E.L., Sansam C.G. et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010;16(12):1429–33. DOI: 10.1038/nm.2251
56. Banito A., Li X., Laporte A.N. et al. The SS18-SSX oncoprotein hijacks KDM2B-PRC1.1 to drive synovial sarcoma. Cancer Cell 2018;33(3):527–41. DOI: 10.1016/j.ccell.2018.01.018
57. Wang X., Lee R.S., Alver B.H. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet 2017;49(2):289–95. DOI: 10.1038/ng.3746
58. Soulez M., Saurin A.J., Freemont P.S., Knight J.C. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene 1999;18(17):2739–46. DOI: 10.1038/sj.onc.1202613
59. Kadoch C., Williams R.T., Calarco J.P. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 2017;49(2):213–22. DOI: 10.1038/ng.3734
60. Garcia C.B., Shaffer C.M., Eid J.E. Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics 2012;13(1):1. DOI: 10.1186/1471-2164-13-189
61. Su L., Sampaio A.V., Jones K.B. et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 2012;21(3):333–47. DOI: 10.1016/j.ccr.2012.01.010
62. Lubieniecka J.M., de Bruijn D.R., Su L. et al. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 2008;68(11):4303–10. DOI: 10.1158/0008-5472.CAN-08-0092
63. Bilgeri A., Klein A., Lindner L.H. et al. The effect of resection margin on local recurrence and survival in high grade soft tissue sarcoma of the extremities: how far is far enough? Cancers (Basel) 2020;12(9):1–13. DOI: 10.3390/cancers12092560
64. Gingrich A.A., Marrufo A.S., Liu Y. et al. Radiotherapy is associated with improved survival in patients with synovial sarcoma undergoing surgery: a national cancer database analysis. J Surg Res 2020;255:378–87. DOI: 10.1016/j.jss.2020.05.075
65. Song S., Park J., Kim H.J. et al. Effects of adjuvant radiotherapy in patients with synovial sarcoma. Am J Clin Oncol Cancer Clin Trials 2017;40(3):306–11. DOI: 10.1097/COC.0000000000000148
66. Spurrell E.L., Fisher C., Thomas J.M., Judson I.R. Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol 2005;16(3):437–44. DOI: 10.1093/annonc/mdi082
67. Eilber F.C., Brennan M.F., Eilber F.R. et al. Chemotherapy is associated with improved survival in adult patients with primary extremity synovial sarcoma. Ann Surg 2007;246(1):105–13. DOI: 10.1097/01.sla.0000262787.88639.2b
68. Noujaim J., Constantinidou A., Messiou C. et al. Successful ifosfamide rechallenge in soft-tissue sarcoma. Am J Clin Oncol Cancer Clin Trials 2018;41(2):147–51. DOI: 10.1097/COC.0000000000000243
69. Carroll C., Patel N., Gunsoy N.B. et al. Meta-analysis of pazopanib and trabectedin effectiveness in previously treated metastatic synovial sarcoma (second-line setting and beyond). Futur Oncol 2022;18(32):3651–65. DOI: 10.2217/fon-2022-0348
70. Mir O., Brodowicz T., Italiano A. et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2016;17(12):1732–42. DOI: 10.1016/S1470-2045(16)30507-1
71. Brodowicz T., Mir O., Wallet J. et al. Efficacy and safety of regorafenib compared to placebo and to post-cross-over regorafenib in advanced non-adipocytic soft tissue sarcoma. Eur J Cancer 2018;99:28–36. DOI: 10.1016/j.ejca.2018.05.008
72. Schmitt T., Mayer-Steinacker R., Mayer F. et al. Vorinostat in refractory soft tissue sarcomas: results of a multi-centre phase II trial of the German Soft Tissue Sarcoma and Bone Tumour Working Group (AIO). Eur J Cancer 2016;64:74–82. DOI: 10.1016/j.ejca.2016.05.018
73. Cassier P.A., Lefranc A., Amela E.Y. et al. A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. Br J Cancer 2013;109(4):909–14. DOI: 10.1038/bjc.2013.442
74. Shen J.K., Cote G.M., Gao Y. et al. Targeting EZH2-mediated methylation of H3K27 inhibits proliferation and migration of synovial sarcoma in vitro. Sci Rep 2016;6:25239. DOI: 10.1038/srep25239
75. Agulnik M., Tannir N.M., Pressey J.G. et al. A phase II, multicenter study of the EZH2 inhibitor tazemetostat in adult subjects with INI1-negative tumors or relapsed/refractory synovial sarcoma. J Clin Oncol 2016;34(15):TPS11071. DOI: 10.1200/JCO.2016.34.15_suppl.TPS11071
76. Mitchell G., Pollack S.M., Wagner M.J. Targeting cancer testis antigens in synovial sarcoma. J Immunother Cancer 2021;9(6):e002072. DOI: 10.1136/jitc-2020-002072
77. Robbins P.F., Kassim S.H., Tran T.L. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 2015;21(5):1019–27. DOI: 10.1158/1078-0432.CCR-14-2708
78. Hong D.S., Van Tine B.A., Biswas S. et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial. Nat Med 2023;29(1):104–14. DOI: 10.1038/s41591-022-02128-z
79. Wang T., Navenot J.M., Rafail S. et al. Identifying MAGE-A4-positive tumors for TCR T cell therapies in HLA-A*02-eligible patients. Mol Ther Methods Clin Dev 2024;32(2):101265. DOI: 10.1016/j.omtm.2024.101265
80. Fuchs J.R., Schulte B.C., Fuchs J.W., Agulnik M. Emerging targeted and cellular therapies in the treatment of advanced and metastatic synovial sarcoma. Front Oncol 2023;25(13):1123464. DOI: 10.3389/fonc.2023.1123464
81. Iura K., Maekawa A., Kohashi K. et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 2017;61:130–9. DOI: 10.1016/j.humpath.2016.12.006
82. D’Angelo S., Demetri G.D., Tine B.A. et al. Final analysis of the phase 1 trial of NY-ESO-1–specific T-cell receptor (TCR) T-cell therapy (letetresgene autoleucel; GSK3377794) in patients with advanced synovial sarcoma (SS). J Immunother Cancer 2020;8(Suppl 3):A182–3. DOI: 10.1136/jitc-2020-sitc2020.0298.
83. D’Angelo S., Noujaim J.C., Thistlethwaite F. et al. IGNYTE-ESO: a master protocol to assess safety and activity of letetresgene autoleucel (lete-cel; GSK3377794) in HLA-A*02+ patients with synovial sarcoma or myxoid/round cell liposarcoma (Substudies 1 and 2). J Clin Oncol 2021;39(15):TPS11582–TPS11582. DOI: 10.1200/JCO.2021.39.15_suppl.TPS11582
84. Gyurdieva A., Zajic S., Chang Y.F. et al. Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma. Nat Commun 2022;13(1):1–18. DOI: 10.1038/s41467-022-32491-x
85. Roszik J., Wang W.L., Livingston J.A. et al. Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes. Clin Sarcoma Res 2017;7(1):1–7. DOI: 10.1186/s13569-017-0077-3
86. Wermke M., Tsimberidou A.M., Mayer-Mokler A. et al. Safety and anti-tumor activity of TCR-engineered autologous, PRAME directed T cells across multiple advanced solid cancers at low doses – clinical update on the ACTengine® IMA203 trial. J Immunother Cancer 2021;9:A1009. DOI: 10.1136/jitc-2021-SITC2021.959
87. Pollack S.M., He Q., Yearley J.H. et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death ligand 1 expression in patients with soft tissue sarcomas. Cancer 2017;123(17):3291–304. DOI: 10.1002/cncr.30726
88. Tawbi H.A., Burgess M., Bolejack V. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017;18(11):1493–501. DOI: 10.1016/S1470-2045(17)30624-1
89. Maki R.G., Jungbluth A.A., Gnjatic S. et al. A pilot study of anti CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma 2013;2013:168145. DOI: 10.1155/2013/168145
90. Somaiah N., Conley A.P., Parra E.R. et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre phase 2 trial. Lancet Oncol 2022;23(9):1156–66. DOI: 10.1016/S1470-2045(22)00392-8
91. D’Angelo S.P., Richards A.L., Conley A.P. et al. Pilot study of bempegaldesleukin in combination with nivolumab in patients with metastatic sarcoma. Nat Commun 2022;13(1):3477. DOI: 10.1038/s41467-022-30874-8
92. Klemen N.D., Hwang S., Bradic M. et al. Long-term follow-up and patterns of response, progression, and hyperprogression in patients after PD-1 blockade in advanced sarcoma. Clin Cancer Res 2022;28(5):939–47. DOI: 10.1158/1078-0432.CCR-21-3445
93. Champiat S., Dercle L., Ammari S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/ PD-L1. Clin Cancer Res 2017;23(8):1920–8. DOI: 10.1158/1078-0432.CCR-16-1741
94. Gordon E.M., Chawla S.P., Tellez W.A. et al. SAINT: a phase I / expanded phase II study using safe amounts of ipilimumab, nivolumab and trabectedin as first-line treatment of advanced soft tissue sarcoma. Cancers (Basel) 2023;15(3):906. DOI: 10.3390/cancers15030906
95. Italiano A., Bellera C., D’Angelo S. PD1/PD-L1 targeting in advanced soft-tissue sarcomas: a pooled analysis of phase II trials. J Hematol Oncol 2020;13(1):1–4. DOI: 10.1186/s13045-020-00891-5
Рецензия
Для цитирования:
Сенченко М.А., Тарарыкова А.А., Козлов Н.А., Фетисов Т.И., Кирсанов К.И., Рогожин Д.В. Синовиальная саркома: современный взгляд на основы патогенеза и терапевтические подходы. Саркомы костей, мягких тканей и опухоли кожи. 2025;17(3):26-37. https://doi.org/10.17650/2219-4614-2025-17-3-26-37
For citation:
Senchenko M.A., Tararykova A.A., Kozlov N.A., Fetisov T.I., Kirsanov K.I., Rogozhin D.V. Synovial sarcoma: current view of pathogenesis and therapeutic approaches. Bone and soft tissue sarcomas, tumors of the skin. 2025;17(3):26-37. (In Russ.) https://doi.org/10.17650/2219-4614-2025-17-3-26-37
 
                    
 
                                                  
            


















 
  Послать статью по эл. почте
            Послать статью по эл. почте 