Preview

Саркомы костей, мягких тканей и опухоли кожи

Расширенный поиск

Компоненты микроокружения сарком мягких тканей. Часть 1

https://doi.org/10.17650/2219-4614-2024-16-1-25-33

Аннотация

Саркомы мягких тканей (СМТ) – редкая гетерогенная группа злокачественных новообразований, характеризующаяся агрессивным течением и плохим ответом на лечение. Это обусловливает актуальность исследований, направленных на изучение патогенеза данной патологии. Опухолевое микроокружение состоит из стромальных и иммунных клеток, кровеносных и лимфатических сосудов, а также внеклеточного матрикса. К настоящему времени известно, что для СМТ характерны сложные взаимоотношения между опухолевыми клетками и компонентами микроокружения. Динамические взаимодействия между ними усиливают адаптацию к меняющимся условиям окружающей среды, что обеспечивает высокий агрессивный потенциал СМТ и устойчивость к противоопухолевой терапии. Фундаментальные исследования, направленные на изучение роли компонентов микроокружения в канцерогенезе СМТ, могут послужить ключом к открытию как новых биомаркеров – предикторов прогноза, так и мишеней для противоопухолевых препаратов. Данная статья посвящена роли компонентов микроокружения СМТ в канцерогенезе и их взаимодействию с клетками этой опухоли.

Об авторах

А. В. Лохонина
Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов»; ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России; Медицинский институт ФГАОУ ВО «Российский университет дружбы народов»
Россия

117198 Москва, ул. Миклухо-Маклая, 6

117997 Москва, ул. Академика Опарина, 4

117198 Москва, ул. Миклухо-Маклая, 6



Э. Д. Джуманиязова
Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов»; Медицинский институт ФГАОУ ВО «Российский университет дружбы народов»
Россия

Энар Денисовна Джуманиязова

117198 Москва, ул. Миклухо-Маклая, 6



Д. Ш. Джалилова
Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов»; Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»
Россия

117198 Москва, ул. Миклухо-Маклая, 6

117418 Москва, ул. Цюрупы, 3



А. М. Косырева
Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов»; Медицинский институт ФГАОУ ВО «Российский университет дружбы народов»; Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»
Россия

117198 Москва, ул. Миклухо-Маклая, 6

117418 Москва, ул. Цюрупы, 3



Г. Г. Казарян
Медицинский институт ФГАОУ ВО «Российский университет дружбы народов»
Россия

117198 Москва, ул. Миклухо-Маклая, 6



Т. Х. Фатхудинов
Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов»; Медицинский институт ФГАОУ ВО «Российский университет дружбы народов»; Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»
Россия

117198 Москва, ул. Миклухо-Маклая, 6

117418 Москва, ул. Цюрупы, 3



Список литературы

1. Blay J.Y. Evolution in soft tissue sarcoma. Future Oncol 2017;13(1s):1–2. DOI: 10.2217/fon-2016-0497

2. Almas T., Khan M.K., Murad M.F. et al. Clinical and pathological characteristics of soft tissue sarcomas: a retrospective study from a developing country. Cureus 2020;12(8):e9913. DOI: 10.7759/cureus.9913

3. Ramu E.M., Houdek M.T., Isaac C.E. et al. Management of soft-tissue sarcomas; treatment strategies, staging, and outcomes. SICOT J 2017;3:20. DOI: 10.1051/sicotj/2017010

4. Gerrand C.H., Bell R.S., Wunder J.S. et al. The influence of anatomic location on outcome in patients with soft tissue sarcoma of the extremity. Cancer 2003;97(2):485–92. DOI: 10.1002/cncr.11076

5. Chintamani. Soft tissue sarcomas-the pitfalls in diagnosis and management. Indian J Surg Oncol 2011;2(4):261–4. DOI: 10.1007/s13193-012-0141-7

6. Hatina J., Kripnerova M., Houfkova K. et al. Sarcoma stem cell heterogeneity. Adv Exp Med Biol 2019;1123:95–118. DOI: 10.1007/978-3-030-11096-3_7

7. Zeng D., Li M., Zhou R., Zhang J. et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 2019;7(5):737–50. DOI: 10.1158/2326-6066.CIR-18-0436

8. Deng J., Zeng W., Kong W. et al. The study of sarcoma microenvironment heterogeneity associated with prognosis based on an immunogenomic landscape analysis. Front Bioeng Biotechnol 2020;8:1003. DOI: 10.3389/fbioe.2020.01003

9. Wang Q., Shao X., Zhang Y. et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med 2023;12(10):11149–65. DOI: 10.1002/cam4.5698

10. Tessaro F.H., Ko E.Y., De Simone M. et al. Single-cell RNA-seq of a soft-tissue sarcoma model reveals the critical role of tumorexpressed MIF in shaping macrophage heterogeneity. Cell Rep 2022;39(12):110977. DOI: 10.1016/j.celrep.2022.110977

11. Petitprez F., de Reyniès A., Keung E.Z. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020;577(7791):556–60. DOI: 10.1038/s41586-019-1906-8

12. Stahl D., Gentles A.J., Thiele R. et al. Prognostic profiling of the immune cell microenvironment in Ewing’s Sarcoma Family of Tumors. Oncoimmunology 2019;8(12):e1674113. DOI: 10.1080/2162402X.2019.1674113

13. Hu C., Chen B., Huang Z. et al. Comprehensive profiling of immunerelated genes in soft tissue sarcoma patients. J Translat Med 2020;18:1–18. DOI: 10.1186/s12967-020-02512-8

14. Gu H.Y., Lin L.L., Zhang C. et al. The potential of five immune-related prognostic genes to predict survival and response to immune checkpoint inhibitors for soft tissue sarcomas based on multi-omic study. Front Oncol 2020;10:1317. DOI: 10.3389/fonc.2020.01317

15. Tsagozis P., Augsten M., Zhang Y. et al. An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol Immunother 2019;68(6):927–36. DOI: 10.1007/s00262-019-02322-y

16. Dufresne A., Lesluyes T., Ménétrier-Caux C. et al. Specific immune landscapes and immune checkpoint expressions in histotypes and molecular subtypes of sarcoma. Oncoimmunology 2020;9(1):1792036. DOI: 10.1080/2162402X.2020.1792036

17. Zhu N., Hou J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int 2020;20(1):1–11. DOI: 10.1186/s12935-020-01672-3

18. Zhou J., Tang Z., Gao S. et al. Tumor-associated macrophages: recent insights and therapies. Front Oncol 2020;10:188. DOI: 10.3389/fonc.2020.00188

19. Mantovani A., Marchesi F., Malesci A. et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399–416. DOI: 10.1038/nrclinonc.2016.217

20. Najafi M., Hashemi Goradel N., Farhood B. et al. Macrophage polarity in cancer: a review. J Cell Biochem 2019;120(3):2756–65. DOI: 10.1002/jcb.27646

21. Nyström H., Jönsson M., Nilbert M. et al. Immune-cell infiltration in high-grade soft tissue sarcomas; prognostic implications of tumorassociated macrophages and B-cells. Acta Oncol 2023;62(1):33–9. DOI: 10.1080/0284186X.2023.2172688

22. Seong G., D’Angelo S.P. New therapeutics for soft tissue sarcomas: overview of current immunotherapy and future directions of soft tissue sarcomas. Front Oncol 2023;13:1150765. DOI: 10.3389/fonc.2023.1150765

23. Cheng S., Li Z., Gao R., Xing B. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021;184(3):792–809. DOI: 10.1016/j.cell.2021.01.010

24. El-Kenawi A., Dominguez-Viqueira W., Liu M. et al. Macrophagederived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res 2021;81(21):5477–90. DOI: 10.1158/0008-5472.CAN-20-4028

25. Cassetta L., Pollard J.W. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018;17(12):887–904. DOI: 10.1038/nrd.2018.169

26. Fujiwara T., Yakoub M.A., Chandler A. et al. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther 2021;20(8):1388–99. DOI: 10.1158/1535-7163.MCT-20-0591

27. Lee C.H., Espinosa I., Vrijaldenhoven S. et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 2008;14(5):1423–30. DOI: 10.1158/1078-0432.CCR-07-1712

28. Nabeshima A., Matsumoto Y., Fukushi J. et al.Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/ Akt pathways. B J Cancer 2015;112(3):547–55. DOI: 10.1038/bjc.2014.637

29. Oike N., Kawashima H., Ogose A. et al. Prognostic impact of the tumor immune microenvironment in synovial sarcoma. Cancer Sci 2018;109(10):3043–54. DOI: 10.1111/cas.13769

30. Kather J.N., Hörner C., Weis C.A. et al. CD163+ immune cell infiltrates and presence of CD54+ microvessels are prognostic markers for patients with embryonal rhabdomyosarcoma. Sci Rep 2019;9(1):9211. DOI: 10.1038/s41598-019-45551-y

31. Minopoli M., Sarno S., Cannella L. et al. Crosstalk between macrophages and myxoid liposarcoma cells increases spreading and invasiveness of tumor cells. Cancers 2021;13(13):3298. DOI: 10.3390/cancers13133298

32. Qayoom H., Sofi S., Mir M.A. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res 2023;71(4):588–99. DOI: 10.1007/s12026-023-09376-2

33. Badalamenti G., Fanale D., Incorvaia L. et al. Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell Immunol 2019;343:103753. DOI: 10.1016/j.cellimm.2018.01.013

34. Smolle M.A., Herbsthofer L., Granegger B. et al. T-regulatory cells predict clinical outcome in soft tissue sarcoma patients: A clinicopathological study. Br J Cancer 2021;25(5):717–24. DOI: 10.1038/s41416-021-01456-0

35. Hemminger J.A., Iwenofu O.H. NY-ESO-1 is a sensitive and specific immunohistochemical marker for myxoid and round cell liposarcomas among related mesenchymal myxoid neoplasms. Mod Pathol 2013;26(9):1204–10. DOI: 10.1038/modpathol.2013.65

36. Sorbye S.W., Kilvaer T., Valkov A. et al. Prognostic impact of lymphocytes in soft tissue sarcomas. PLoS One 2011;6(1):e14611. DOI: 10.1371/journal.pone.0014611

37. Pollack S.M., He Q., Yearley J.H. et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed deathligand 1 expression in patients with soft tissue sarcomas. Cancer 2017;123(17):3291–304. DOI: 10.1002/cncr.30726

38. Nakajima K., Raz A. T-cell infiltration profile in musculoskeletal tumors. J Orthop Res 2021;39(3):536–42. DOI: 10.1002/jor.24890

39. Fujii H., Arakawa A., Utsumi D. et al. CD8+ tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. Int Journal Cancer 2014;134(10):2393–402. DOI: 10.1002/ijc.28581

40. Van Erp A.E., Versleijen-Jonkers Y.M., Hillebrandt-Roeffen M.H. et al. Expression and clinical association of programmed cell death-1, programmed death-ligand-1 and CD8+ lymphocytes in primary sarcomas is subtype dependent. Oncotarget 2017;8(41):71371. DOI: 10.18632/oncotarget.19071

41. Nowicki T.S., Akiyama R., Huang R.R. et al. Infiltration of CD8 T cells and expression of PD-1 and PD-L1 in synovial sarcoma. Cancer Immunol Res 2017;5(2):118–26. DOI: 10.1158/2326-6066.CIR-16-0148

42. Liu Y., Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med 2016;94(5):509–22. DOI: 10.1007/s00109-015-1376-x

43. D’Angelo S.P., Shoushtari A.N., Agaram N.P. et al. Prevalence of tumorinfiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Human Pathol 2015;46(3):357–65. DOI: 10.1016/j.humpath.2014.11.001

44. Li L.J., Shi Y.C., Luo M.X. et al. Effects of moxibustion on Treg cells in sarcoma microenvironment. Journal of Integrative Medicine 2021;19(3):251–7. DOI: 10.1016/j.joim.2021.02.001

45. Que Y., Xiao W., Guan Y.X. et al. PD-L1 expression is associated with FOXP3+ regulatory T-cell infiltration of soft tissue sarcoma and poor patient prognosis. J Cancer 2017;8(11):2018. DOI: 10.7150/jca.18683

46. Keung E.Z., Burgess M., Salazar R. et al. Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin Cancer Res 2020;26(6):1258–66. DOI: 10.1158/1078-0432.CCR-19-1824

47. Judge S.J., Darrow M.A., Thorpe S.W. et al. Analysis of tumorinfiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas. J Immunother Cancer 2020;8(2):e001355. DOI: 10.1136/jitc-2020-001355

48. Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nature Rev Immunol 2020;20(5):294–307. DOI: 10.1038/s41577-019-0257-x

49. Premkumar K., Shankar B.S. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. Cancer Immunol Immunother 2021;70(1):153–68. DOI: 10.1007/s00262-020-02666-w

50. Tseng W.W., Malu S., Zhang M. et al. Analysis of the intratumoral adaptive immune response in well differentiated and dedifferentiated retroperitoneal liposarcoma. Sarcoma 2015;2015:547460. DOI: 10.1155/2015/547460

51. Sorbye S.W., Kilvaer T.K., Valkov A. et al. Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin Pathol 2012;12(1):1–11. DOI: 10.1371/journal.pone.0014611

52. Sorbye S.W., Kilvaer T.K., Valkov A. et al. Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas. BMC Clin Pathol 2012;12(1):1–10. DOI: 10.1186/1472-6890-12-5

53. Lazar A.J., McLellan M.D., Bailey M.H. et al. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 2017;171(4):950–65. DOI: 10.1016/j.cell.2017.10.014

54. Sousa L.M., Almeida J.S., Fortes-Andrade T. et al. Tumor and peripheral immune status in soft tissue sarcoma: implications for immunotherapy. Cancers 2021;13(15):3885. DOI: 10.3390/cancers13153885

55. Ponzetta A., Carriero R., Carnevale S. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 2019;178(2):346–60. DOI: 10.1016/j.cell.2019.05.047

56. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016;16(9):582–98. DOI: 10.1038/nrc.2016.73

57. Joshi R.S., Kanugula S.S., Sudhir S. et al. The role of cancer-associated fibroblasts in tumor progression. Cancers 2021;13(6):1399. DOI: 10.3390/cancers13061399

58. LeBleu V.S., Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 2018;11(4):dmm029447. DOI: 10.1242/dmm.029447

59. Erdogan B., Webb D.J. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 2017;45(1):229–36. DOI: 10.1042/BST20160387

60. Kudo A., Yoshimoto S., Yoshida H. et al. Biological features of canine cancer-associated fibroblasts and their influence on cancer cell invasion. J Vet Med Sci 2022;84(6):784–91. DOI: 10.1292/jvms.22-0041

61. Feng C., Kou L., Yin P. et al. Excessive activation of IL­33/ST2 in cancer­associated fibroblasts promotes invasion and metastasis in ovarian cancer. Oncol Lett 2022;23(5):1–12. DOI: 10.3892/ol.2022.13278

62. Komohara Y., Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol 2017;241(3):313–5. DOI: 10.1002/path.4824

63. Harati K., Daigeler A., Hirsch T. et al. Tumor-associated fibroblasts promote the proliferation and decrease the doxorubicin sensitivity of liposarcoma cells. Int J Mol Med 2016;37(6):1535–41. DOI: 10.3892/ijmm.2016.2556

64. Wright K., Ly T., Kriet M. et al. Cancer-associated fibroblasts: master tumor microenvironment modifiers. Cancers 2023;1(6):1899. DOI: 10.3390/cancers15061899

65. Huang H., Wang Z., Zhang Y. et al Mesothelial cell-derived antigenpresenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 2022;40(6):656–73. DOI: 10.1016/j.ccell.2022.04.011

66. Mao X., Xu J., Wang W., Liang C. et al. Crosstalk between cancerassociated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021;20(1):1–30. DOI: 10.1186/s12943-021-01428-1

67. Manzur M., Hamzah J., Ganss R. Modulation of the “blood-tumor” barrier improves immunotherapy. Cell Cycle 2008;7(16):2452–5. DOI: 10.4161/cc.7.16.6451

68. Lee C.T., Mace T., Repasky E.A. Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hyperthermia 2010;26(3):232–46. DOI: 10.3109/02656731003601745

69. Nordsmark M., Alsner J., Keller J. et al. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 2001;84(8):1070–5. DOI: 10.1054/bjoc.2001.1728

70. Pouysségur J., Dayan F., Mazure N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006;441(7092): 437–43. DOI: 10.1038/nature04871

71. Aggerholm-Pedersen N., Sørensen B.S., Overgaard J. et al. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma. Br J Cancer 2016;115(9):1096–104. DOI: 10.1038/bjc.2016.310

72. Nyström H., Jönsson M., Werner-Hartman L. et al. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall. J Clin Pathol 2017;70(10):879–85. DOI: 10.1136/jclinpath-2016-204149

73. Pakos E.E., Goussia A.C., Tsekeris P.G. et al. Expression of vascular endothelial growth factor and its receptor, KDR/Flk-1, in soft tissue sarcomas. Anticancer Res 2005;25(5):3591–6.

74. Yudoh K., Kanamori M., Ohmori K. et al. Concentration of vascular endothelial growth factor in the tumour tissue as a prognostic factor of soft tissue sarcomas. Br J Cancer 2001;84(12):1610–5. DOI: 10.1054/bjoc.2001.1837

75. Hayes A.J., Mostyn-Jones A., Koban M.U. et al. Serum vascular endothelial growth factor as a tumour marker in soft tissue sarcoma. Br J Surg 2004;91(2):242–7. DOI: 10.1002/bjs.4398

76. Tomlinson J., Barsky S.H., Nelson S. et al. Different patterns of angiogenesis in sarcomas and carcinomas. Clin Cancer Res 1999;5(11):3516–22.

77. Tammela T., Zarkada G., Wallgard E. et al. VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008;454(7204):656–60. DOI: 10.1038/nature07083

78. Yoon S.S., Segal N.H., Park P.J. et al. Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray gene expression. J Surg Res 2006;135(2):282–90. DOI: 10.1016/j.jss.2006.01.023

79. Kilvaer T.K., Valkov A., Sorbye S.W. Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients. J Transl Med 2011;9:104. DOI: 10.1186/1479-5876-9-104

80. Rocchi L., Caraffi S., Perris R. et al. The angiogenic asset of soft tissue sarcomas: a new tool to discover new therapeutic targets. Biosci Rep 2014;34(6):e00147. DOI: 10.1042/BSR20140075


Рецензия

Для цитирования:


Лохонина А.В., Джуманиязова Э.Д., Джалилова Д.Ш., Косырева А.М., Казарян Г.Г., Фатхудинов Т.Х. Компоненты микроокружения сарком мягких тканей. Часть 1. Саркомы костей, мягких тканей и опухоли кожи. 2024;16(1):25-33. https://doi.org/10.17650/2219-4614-2024-16-1-25-33

For citation:


Lokhonina A.V., Jumaniyazova E.D., Dzhalilova D.Sh., Kosyreva A.M., Kazaryan G.G., Fatkhudinov T.Kh. Components of the microenvironment of soft tissue sarcomas. Part I. Bone and soft tissue sarcomas, tumors of the skin. 2024;16(1):25-33. (In Russ.) https://doi.org/10.17650/2219-4614-2024-16-1-25-33

Просмотров: 431


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2219-4614 (Print)
ISSN 2782-3687 (Online)