Preview

Bone and soft tissue sarcomas, tumors of the skin

Advanced search

APPLICATION OF NKX2-2, STEAP1 AND CCND1 GENES EXPRESSION FOR BONE MARROW INVOLVEMENT DETECTION IN PATIENTS WITH EWING FAMILY TUMORS

Abstract

We estimated the applicability of NKX2-2, STEAP1 and CCND1 genes expression evaluation by real-time PCR for bone marrow (BM) involvement detection in Ewing family tumors (EFT) patients. Expression of molecular markers were analyzed in 59 BM samples from 6 EFT patients with EWS gene rearrangements, in 20 BM samples from 5 patients without detected rearrangements, in 8 BM samples from 8 patients without malignancies, in SK-N-MC cell line and in 9 samples of the peripheral blood stem cells. BM samples were considered true positive in case of EWS-FLI1 or EWS-ERG fusion gene transcript presence or tumor cells in BM smears. NKX2-2 expression was not revealed in normal BM while was present in positive BM samples and was not found in the majority of negative BM samples. Expression of NKX2-2 and CCND1 remained stable during EFT treatment, while STEAP1 expression was downmodulated. ROC-analysis revealed threshold levels of expression for each marker which were used for diagnostic values calculation. NKX2-2 demonstrated high positive and negative predictive values (0,889 и 0,976 respectively) for EFT marrow disease detection and monitoring. Overall correct prediction value achieved 0,949. STEAP1 and CCND1 assessment was not relevant for BM disease monitoring in EFT patients.

About the Authors

A. E. Druy
Regional Children’s Hospital №1; Ural State Medical Academy; Institute of Medical Cell Technologies
Russian Federation


G. A. Tsaur
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


A. M. Popov
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


A. S. Demina
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


T. O. Riger
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


S. N. Tuponogov
Regional Children’s Hospital №1
Russian Federation


E. V. Shorikov
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


L. I. Saveliev
Regional Children’s Hospital №1; Ural State Medical Academy; Institute of Medical Cell Technologies
Russian Federation


S. V. Tsvirenko
Regional Children’s Hospital №1; Ural State Medical Academy
Russian Federation


L. G. Fechina
Regional Children’s Hospital №1; Institute of Medical Cell Technologies
Russian Federation


References

1. Иванова Н.М. Саркома Юинга. В кн.: «Клинические лекции по детской онкологии». Под ред. Л.А. Дурнова. М., «Медицинское информационное агентство». 2004, с. 251-270.

2. Peter M., Magdelenat H., Michon J. et al. Sensitive detection of occult Ewing’s cells by the reverse-transcriptase polymerase chain reaction. Br. J. Cancer. 1995, No. 72, p. 96-100.

3. Zoubek A., Ladenstein R., Windhager R. et al. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: A preliminary evaluation. Int. J. Cancer. 1998, No. 79, p. 56-60.

4. Cheung I., Feng Y., Danis K. et al. Novel Markers of Subclinical Disease for Ewing Family Tumors from Gene Expression Profiling. Clin. Cancer Res. 2007, No. 13 (23), p. 6978-6983.

5. Cheung I.Y., Cheung N.K.V. Quantification of marrow disease in neuroblastoma by real-time reverse transcription-PCR. Clin. Cancer Res. 2001, No. 7, p. 1698-1705.

6. Aurias A., Rimbaut A., Buffe D. et al. Chromosomal translocation in Ewing’s sarcoma. N. Engl. J. Med. 1983, No. 309, p. 496-497.

7. Turc-Carel C., Philip I., Berger M.P. et al. Chromosomal translocations in Ewing’s sarcoma. N. Engl. J. Med. 1983, No. 309, p. 497-498.

8. Sorensen P.H., Lessnick S.L., Lopez-Terrada D. et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet. 1994, No. 6, p. 146-151.

9. Jeon I.S., Davis J.N., Braun B.S. et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995, No. 10, p. 1229-1234.

10. Kaneko Y., Yoshida K., Handa M. et al. Fusion of an ETS-family gene, E1AF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosom Cancer. 1996, No. 15, p. 115-121.

11. Schleiermacher G., Peter M., Oberlin O. et al. Increased Risk of Systemic Relapses Associated With Bone Marrow Micrometastasis and Circulating Tumor Cells in Localized Ewing Tumor. J. Clin. Oncol. 2003, No. 21, p. 85-91.

12. Muller H., Lukas, J., Schneider, A. et al. Cyclin D1 expression is regulated by the retinoblastoma protein. Proc. Nat. Acad. Sci. 1994, No. 91, p. 2945-2949.

13. Toyoda M., Shirato H., Nakajima K. et al. Jumonji down-regulates cardiac cell proliferation by repressing cyclin D1 expression. Dev. Cell. 2003, No. 5, p. 85-97.

14. Brisken C., Ayyannan A., Nguyen C. et al. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev. Cell. 2002, No. 3, p. 877-887.

15. Fu M., Wang C., Li Z. et al. Cyclin D1: normal and abnormal functions. Endocrinology. 2004, No. 145, p. 5439-5447.

16. Ding Y.Q., Marklund U., Yuan W et al. Lmx1b is essential for the development of serotonergic neurons. Nature Neurosci. 2003, No. 6, p. 933-938.

17. Sussel L., Kalamaras J., Hartigan-O’Connor D.J. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998, No. 125, p. 2213-2221.

18. Hubert R.S., Vivanco I., Chen, E. et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc. Nat. Acad. Sci. 1999, No. 96, p. 14523-14528.

19. Мисюрин А.В., Аксенова Е.В., Крутов А.А. и соавт. Молекулярная диагностика хронического миелолейкоза. Гематология и трансфузиология. 2007, № 2, c. 35-40.

20. Zweig M.H., Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, No. 31, p. 561-577.

21. Obuchowski N.A. ROC analysis. Am. J. Roentgenol. 2005, No. 184, p. 364-372.

22. DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, v. 44, p. 837-845.

23. Weinstein S., Obuchowski N.A., Lieber M.L. Clinical evaluation of diagnostic tests. Am. J. Roentgenol. 2005, No. 184, p. 14-19.

24. Jarvik J.G. The research framework. Am. J. Roentgenol. 2001, v. 176, p. 873-877.

25. Kojima T, Asami S., Chin M. et al. Detection of Chimeric Genes in Ewing’s Sarcoma and Its Clinical Applications. Biol. Pharm. Bull. 2002, No. 25 (8), p. 991-994.


Review

For citations:


Druy A.E., Tsaur G.A., Popov A.M., Demina A.S., Riger T.O., Tuponogov S.N., Shorikov E.V., Saveliev L.I., Tsvirenko S.V., Fechina L.G. APPLICATION OF NKX2-2, STEAP1 AND CCND1 GENES EXPRESSION FOR BONE MARROW INVOLVEMENT DETECTION IN PATIENTS WITH EWING FAMILY TUMORS. Bone and soft tissue sarcomas, tumors of the skin. 2012;(4):41-48. (In Russ.)

Views: 95


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-4614 (Print)
ISSN 2782-3687 (Online)