Preview

Bone and soft tissue sarcomas, tumors of the skin

Advanced search

Experimental approaches of nanoparticles using in the diagnostics and therapy of soft tissue tumors

Abstract

The purpose of evaluation was the analysis of experimental data about the using possibilities of the different nanostructures together with local ultrasound, magnetic or laser irradiation for diagnostics and therapy of the malignant tumors. On the developed solid intramuscular tumor models with different histological genesis was shown, that solid-phase inclusions (nanoclasters) in tumor together with local ultrasound leads to the significant increasing of therapeutically efficacy. The experimental evaluation was confirmed that this phenomenon realizes through increase evolution of heat and reducing of cavitations’ threshold and impact on mechanical strength of biological membranes associated with the presence in zone the irradiation of solid inclusions. Discussed the possibility of transport of anticancer drugs using nanoparticles in combination with local ultrasound exposure and improvement of visualization of the lesion by modifying tumor by the solid-phase inclusions. It was shown that improvement of laser diagnostics methods involved with the ferromagnetic nano-contrasters. The possibility to improving of electromagnetic or laser hyperthermia through composed nanostructures on the ground of magnetic nanoparticles with high sensitive to operating influence thin graphite covering was discussed. Obtained effects and the conclusions based on some assumptions suggest that the application of nanotechnology will improve the efficiency of diagnosis and treatment of soft tissue tumors in patients.

About the Authors

H. M. Treshalina
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


N. V. Andronova
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


A. L. Nikolaev
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


A. V. Gopin
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


V. E. Bozhevolnov
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


B. Yu. Bokhyan
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


G. A. Meerovoch
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


V. B. Loschenov
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


S. Sh. Karsieva
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


B. I. Dolgushin
FGBu N.N. Blokhin Russian Cancer Research Center
Russian Federation


References

1. Hiraoka W., Honda H., Feril Jr. L.B. et al. Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing. Ultrasonics Sonochemistry. 2006, v. 13, No. 6, p. 535-542.

2. Yumita N., Umemura S. Ultrasonically induced cell damage and membrane lipid peroxidation by photofrin II: mechanism of sonodynamic activation. J. Med. Ultrasonics. 2004, v. 31, p. 35-40.

3. Андронова Н.В., Трещалина Е.М., Филоненко Д.В., Николаев А.Л. Комбинированная терапия злокачественных опухолей с использованием локального ультразвукового воздействия (экспериментальное исследование). Российский Биотерапевтический Журнал. 2005, т. 4, № 3, с. 101-105.

4. Андронова Н.В., Трещалин И.Д., Николаев А.Л. и соавт. Экспериментальная оценка эффективности и безопасность сочетания локальной ультразвуковой гипертермии, ифосфамида и уропротектора. Саркомы костей, мягких тканей и опухоли кожи. 2012, № 2, с. 48-57.

5. Николаев А.Л., Гопин А.В., Чичерин Д.С. и соавт. Локализация акустической энергии в гелевых системах на твердофазных неоднородностях. Вестник Московского университета. Сер. 2. Химия. 2008, т. 49, № 3, с. 203-208.

6. Gopin A., Mazina S., Nikolaev A. Efficiency ofthe Combined Action of Ultrasound and Nanoparticles of Different Nature on Bacteria. Book of abstracts, 13th Meeting of the European Society of Sonochemistry. 2012, p. 122-123.

7. Nikolaev A., Gopin A., Bozhevolnov V. et al. Ultrasonic Nanomedicine in the Aspect of Therapy of Oncological Diseases. Book of abstracts, 13th Meeting of the European Society of Sonochemistry. 2012, p. 91-92.

8. Николаев А.Л., Гопин А.В., Божевольнов В.Е. и соавт. Применение твердофазных неоднородностей для повышения эффективности ультразвуковой терапии онкологических заболеваний. Акустический журнал. 2009, т. 55, № 4-5, с. 565-574.

9. Николаев А.Л., Гопин А.В., Божевольнов В.Е. и соавт. Некоторые аспекты ультразвуковой наномедицины. Сборник трудов XX сессии Российского акустического общества. Т. 3. М.: ГЕОС. 2008, с. 117-120.

10. Николаев А.Л., Гопин А.В., Божевольнов В.Е. и соавт. Сонодинамическая терапия онкологических заболеваний: комплексное экспериментальное исследование. Сборник материалов III Евразийского конгресса по медицинской физике и инженерии «МЕДИЦИНСКАЯ ФИЗИКА 2010», 21-25 июня 2010 г., т. 1, с. 150-152.

11. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и соавт. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: изд. «Гриф и Ко». 2012, гл. 39, с. 642-657.

12. Вольпин М.Е., Крайнова Н.Ю., Москалева И.В. и соавт. Комплексы переходных металлов как катализаторы образования активных форм кислорода в реакциях автоокисления. Сообщение 1. Фталоцианиновые комплексы кобальта и железа. Известия Академии наук. Серия химическая. 1996, № 8, с. 2105-2111.

13. Aoki H., Aoki H., Kutsuno T et al. An in vivo study on the reaction of hydroxyapatite-sol injected into blood. Journal of Materials Science: Materials in Medicine. 2000, v. 11, p. 67-72.

14. Laschke M.W., Witt K., Pohlemann T, Menger M.D. Injectable nanocrystalline hydroxyapatite paste for bone substitution: In vivo analysis ofbiocompatibility and vascularization. Journal of Biomedical Materials Research. Part B Applied Biomaterials. 2007, v. 82, p. 494-505.

15. Трапезникова М.Ф., Поздняков К.В., Уренков С.Б. Ультразвуковая аблация (HIFU-терапия) в лечении рака предстательной железы у пожилых пациентов. 2012. http ://hi-fu.ru/ru/materials4.shtml.

16. Meerovich I.G., Meerovich G.A., Dolotova O.V. et al. Contrasting agent for magnetic resonance imaging based on nanostructural dispersion of Manganese derivative of phthalocyanine: preliminary investigation results. Nanotechnology 2009: Life Sciences, Medicine, Diagnostics, Bio Materials and Composites. Chapter 1: Cancer Nanotechnology. 2009, p. 15-17.

17. Stratonnikov A.A., Loschenov V.B., Ryabova A.V. et al. Application of Light Absorbing and Magnetic Nanoparticles in Phototherapy. Proceeding of International Conference Advanced Laser Technologies ALT’07. 2007, p. 30.

18. Ryabova A.V., Vasilchenko S.Y., Grachev P.V. et al. Biocompatible Carbon-coated 3d Metal Nanocomposites for Therapy of Oncological Diseases. BONSAI project symposium: Breakthroughs in nanoparticles for bio-imaging. AIP Conference Proceedings. 2010, v 1275, p. 128-133.


Review

For citations:


Treshalina H.M., Andronova N.V., Nikolaev A.L., Gopin A.V., Bozhevolnov V.E., Bokhyan B.Yu., Meerovoch G.A., Loschenov V.B., Karsieva S.Sh., Dolgushin B.I. Experimental approaches of nanoparticles using in the diagnostics and therapy of soft tissue tumors. Bone and soft tissue sarcomas, tumors of the skin. 2013;(1):60-66. (In Russ.)

Views: 84


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-4614 (Print)
ISSN 2782-3687 (Online)